• Title/Summary/Keyword: Coolant Circulation

Search Result 74, Processing Time 0.017 seconds

Analysis of Loss of Offsite Power Transient Using RELAP5/MODl/NSC; I: KNU1 Plant Transient Simulation (RELA5/MOD1/NSC를 이용한 원자력 1호기 외부전원상실사고해석 - I. 실제사고해석)

  • Kim, Hho-Jung;Chung, Bub-Dong;Lee, Young-Jin;Kim, Jin-Soo
    • Nuclear Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.97-106
    • /
    • 1986
  • System thermal-hydraulic parameters and simulated, using the best-estimate system code(RELAPS/MODl/NSC), based upon the sequence of events for the KNU1 (Korea Nuclear Unit 1) loss of offsite power transient at 77.5% power which occurred on June 9,1981. The results are compared with the actual plant transient data and show good agreements. After the flow coastdown following the trips of both reactor coolant pumps, the establishment of natural circulation by the temperature difference between the hot and the cold legs is confirmed. The calculated reactor coolant flowrate closely approximates the plant data indicating the validity of relevant thermal-hydraulic models in the RELAP5/MOD1/NSC. Results also show that the sufficient heat removal capability is secured by the appropriate supply of the auxiliary feedwater without the operation of S/G PORVs. In addition, a scenario accident at full power, based upon the same sequence of events described above, is also analysed and the results confirmed that the safety of KNU1 is secured by the appropriate operation of the S/G PORVs coupled with the supply of auxiliary feedwater which ensures sufficient heat removal capability. The characteristics of the non-safety related components such as the turbine stop valve closing time, S/G PORV settings etc. are recognized to be important in the transient analyses on a bestestimate basis.

  • PDF

Modeling of Hydrodynamic Processes at a Large Leak of Water into Sodium in the Fast Reactor Coolant Circuit

  • Perevoznikov, Sergey;Shvetsov, Yuriy;Kamayev, Aleksey;Pakhomov, Ilia;Borisov, Viacheslav;Pazin, Gennadiy;Mirzeabasov, Oleg;Korzun, Olga
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1162-1173
    • /
    • 2016
  • In this paper, we describe a physicomathematical model of the processes that occur in a sodium circuit with a variable flow cross-section in the case of a water leak into sodium. The application area for this technique includes the possibility of analyzing consequences of this leak as applied to sodium-water steam generators in fast neutron reactors. Hydrodynamic processes that occur in sodium circuits in the event of a water leak are described within the framework of a one-dimensional thermally nonequilibrium three-component gas-liquid flow model (sodium-hydrogen-sodium hydroxide). Consideration is given to the results of a mathematical modeling of experiments involving steam injection into the sodium loop of a circulation test facility. That was done by means of the computer code in which the proposed model had been implemented.

Overview of separate effect and integral system tests on the passive containment cooling system of SMART100

  • Jin-Hwa Yang;Tae-Hwan Ahn;Hong Hyun Son;Jin Su Kwon;Hwang Bae;Hyun-Sik Park;Kyoung-Ho Kang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1066-1080
    • /
    • 2024
  • SMART100 has a containment pressure and radioactivity suppression system (CPRSS) for passive containment cooling system (PCCS). This prevents overheating and over-pressurization of a containment through direct contact condensation in an in-containment refueling water storage tank (IRWST) and wall condensation in a CPRSS heat exchanger (CHX) in an emergency cool-down tank (ECT). The Korea Atomic Energy Research Institute (KAERI) constructed scaled-down test facilities, SISTA1 and SISTA2, for the thermal-hydraulic validation of the SMART100 CPRSS. Three separate effect tests were performed using SISTA1 to confirm the heat removal characteristics of SMART100 CPRSS. When the low mass flux steam with or without non-condensable gas is released into an IRWST, the conditions for mitigation of the chugging phenomenon were identified, and the physical variables were quantified by the 3D reconstruction method. The local behavior of the non-condensable gas was measured after condensation inside heat exchanger using a traverse system. Stratification of non-condensable gas occurred in large tank of the natural circulation loop. SISTA2 was used to simulate a small break loss-of-coolant accident (SBLCOA) transient. Since the test apparatus was a metal tank, compensations of initial heat transfer to the material and effect of heat loss during long-term operation were important for simulating cooling performance of SMART100 CPRSS. The pressure of SMART100 CPRSS was maintained below the design limit for 3 days even under sufficiently conservative conditions of an SBLOCA transient.

Influences of Viscous Losses and End Effects on Liquid Metal Flow in Electromagnetic Pumps

  • Kim, Hee-Reyoung;Seo, Joon-Ho;Hong, Sang-Hee;Suwon Cho;Nam, Ho-Yun;Man Cho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.233-240
    • /
    • 1996
  • Analyses of the viscous and end effects on electromagnetic (EM) pumps of annular linear induction type for the sodium coolant circulation in Liquid Metal Fast Breeder Reactors have been carried out based on the MHD laminar flow analysis and the electromagnetic field theory. A one-dimensional MHD analysis for the liquid metal flowing through an annular channel has been performed on the basis of a simplified model of equivalent current sheets instead of three-phase currents in the discrete primary windings. The calculations show that the developed pressure difference resulted from electromagnetic and viscous forces in the liquid metal is expressed in terms of the slip, and that the viscous loss effects are negligible compared with electromagnetic driving forces except in the low-slip region where the pumps operate with very high flow velocities comparable with the synchronous velocity of the electromagnetic fields, which is not applicable to the practical EM pumps. A two-dimensional electromagnetic field analysis based on an equivalent current sheet model has found the vector potentials in closed form by means of the Fourier transform method. The resultant magnetic fields and driving forces exerted on the liquid metal reveal that the end effects due to finiteness of the pump length are formidable. In addition, a two-dimensional numerical analysis for vector potentials has been performed by the SOR iterative method on a realistic EM pump model with discretely-distributed currents in the primary windings. The numerical computations for the distributions of magnetic fields and developed pressure differences along the pump axial length also show considerable end effects at both inlet and outlet ends, especially at high flow velocities. Calculations of each magnetic force contribution indicate that the end effects are originated from the magnetic force caused by the induced current ( u x B ) generated by the liquid metal movement across the magnetic field rather than the one (E) produced by externally applied magnetic fields by three-phase winding currents. It is concluded that since the influences of the end effects in addition to viscous losses are extensive particularly in high-velocity operations of the EM pumps, it is necessary to find ways to suppress them, such as proper selection of the pump parameters and compensation of the end effects.

  • PDF