• Title/Summary/Keyword: Cool tube

Search Result 45, Processing Time 0.021 seconds

Analysis of the thermal performances of air-earth direct heat exchanger (공기 지중간 직접열교환시스템의 열성능 해석)

  • Kim, W.K.;An, J.S.;Choi, Y.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.112-121
    • /
    • 1997
  • This study is focused on the development and selection of optimal cool tube system to maximize its thermal performance. Cool tube is devised to reduce the heating and cooling load of building by preheating or refreshing of intake air. Finite volume method was adopted to solve the conduction problem between the cool tube and earth. We examine the cool tube system for two operating periods, a short term(12 hours) and a long term(3 months). The results of short term operations reveal that condensation significantly influences and raises the exit air temperature. For long term operations, optimum conditions of cool tube system are obtained with variations of flow-rate, depth, length and diameter of cool tube.

  • PDF

Analysis on the thermal performances of air-earth direct heat exchanger in one year (공기 지중간 직접열교환시스템의 연중 열성능 해석)

  • Kim, W.K.;An, J.S.;Choi, Y.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.517-526
    • /
    • 1997
  • This study is focused on the development and selection of the optimal cool tube system to maximize its thermal performance. Cool tube is devised to reduce the heating and cooling load of building by preheating or refreshing of intake air with buried pipes. Finite volume method is adopted to solve the conduction problem between the cool tube and earth. We examine the cool tube system for two operating periods, a short term(12 hours) and a long term(3 months). The results of short term operations reveal that condensation significantly influences and raises the exit air temperature. For long term operations, optimum conditions of cool tube system are obtained with variations of flow-rate, depth, length and diameter of cool tube.

  • PDF

Ventilation Load Reduction Plan Using Cool Tube System Case (Cool Tube System 사례를 활용한 환기부하 절감방안)

  • Jeong, Min Yeong;Park, Jin Chul;Yang, Young Kwon
    • Land and Housing Review
    • /
    • v.10 no.1
    • /
    • pp.25-32
    • /
    • 2019
  • In this study, the case analysis data on underground temperature are presented. In addition, numerical analysis of the ventilation load reduction plan was derived according to the residence schedule change for the building with cool tube. The research scope and method are as follows. The overall system principle was examined through reviewing the theory of the Cool tube system. Case study and analysis were conducted. Numerical simulation was used to examine the change in energy usage. Also, the change of load energy in case of varying amount of ventilation was derived based on actual building room schedule. When the Cool tube system was applied to the residential buildings, the cooling load was reduced from 3,331 kW to 193 kW, which showed a reduction effect of about 90%.The heating load was reduced from 42,276kW to 32,575kW by 23%.Also, result shows that the cooling load decreased by 24% and the heating load decreased by 66% when the number of ventilation according to the occupancy schedule was applied.

A Geothermal Model of Pit Area Using Computational Fluid Dynamics (CFD를 이용한 피트의 지중열 모델 구축에 관한 연구)

  • Min, Joon Ki;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.8 no.5
    • /
    • pp.11-16
    • /
    • 2008
  • This research has established CFD model on pit's cool-tube system through heat and air movement simulations, of which data was based on experimental and verification. This research work verified the effectiveness of the cool-tube system by analysing temperature, humidity and air current of the actually installed case. Also, we analysed heat transfer through air current simulation and the results are as followings. Firstly, we experiment on temperature, humidity and speed of air currents of the cool tube system with pit space during the month of May (spring). The average exterior temperature was $16.1^{\circ}C$, and $18.2^{\circ}C$ for the pit, $24.7^{\circ}C$ for the compressor room. Secondly, based on measured data of real case, we have analysed heat transfer through air current simulation and verified our proposed model. The actual measurement of average temperature of exhaust air of the pit's area is $19.7^{\circ}C$ with tolerance of $-0.33^{\circ}C{\sim}-0.6^{\circ}C$ compared to above simulations. Thirdly, having verified air current simulation model with formation of 260,000 and 1,000,000 cells, we could get reasonable near values with 260,000 cells. Lastly, the next step of research would be focused on proposing the best possible pit's cool-tube system after analysis of heat transfer of the air current simulation based on verified CFD model.

A Study for Performance Improvements in the Coaxial Type Stirling Pulse Tube Cryocooler (동축형 스털링 맥동관 냉동기의 성능개선에 관한 연구)

  • Park, S.J.;Hong, Y.J.;Kim, H.B.;Kim, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1329-1334
    • /
    • 2004
  • The most compact and convenient pulse tube cryocooler for practical applications is the coaxial type. It can replace Stirling cryocooler without any change to the Dewar or the connection to the cooled devices. The experimental results of the coaxial inertance tube pulse tube cryocooler for cooling superconductor RF filter are presented in this paper. To find optimal conditions of inertance tube pulse tube cryocooler, no load temperature according to the variations of inertance tube volume, reservoir volume are measured, and the cool down characteristics at the particular conditions are presented. In case of the coaxial type inertance tube pulse tube refrigerator, cool down time is the lowest in the inertance tube diameter of 1.3 mm and inertance tube length of 1900 mm and lowest temperature is 112K. This results are not satisfactory for practical applications. So, We propose vacuum insulation between regenerator and pulse tube in the Stirling type coaxial pulse tube cryocooler. Stirling type coaxial pulse tube cryocooler with the vacuum insulation between regenerator and pulse tube was designed and manufactured by KIMM(Korea Institute of Machinery and Materials). The optimal conditions will be tested for Stirling type coaxial pulse tube cryocooler with the vacuum insulation between regenerator and pulse tube.

  • PDF

Experimental Analysis of the Effect of Phase Change at the Entrance of a Capillary Tube by Sub-cooling Control on Refrigerant-induced Noise (과냉도에 따른 모세관 입구단에서의 냉매 상태 변화가 냉장고 냉매 소음에 미치는 영향의 실험적 분석)

  • Oh, Young-Hoo;Kim, Min-Seong;Han, Hyung-Suk;Kim, Tae-Hoon;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.12
    • /
    • pp.1184-1190
    • /
    • 2012
  • This study is focused on the experimental analysis of the noise induced by phase change of refrigerant at the entrance of capillary tube. The refrigerant is usually two-phase condition when it flowed into the capillary tube. At the entrance of capillary tube, the phase condition of refrigerant is formed by sub-cool control. If it has sufficient sub-cool temperature, all of the vapor refrigerants turned to liquid, which means there is only liquid. Otherwise, the gas is coexisted. Based on this theory, we experiment on each case by changing sub-cool temperature using refrigerant-supplying equipment. The noise level is measured for each case and compared.

A Study on Thermo-Hydraulic Analysis for KSTAR(Korea Superconducting Tokamak Advanced Research) Cooling Line System (KSTAR(Korea Superconducting Tokamak Advanced Research) 냉각 시스템에 대한 열해석 연구)

  • Kim, H.W.;Ha, J.S.;Kim, D.S.;Lee, J.S.;Choi, C.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.296-301
    • /
    • 2003
  • A study on the engineering design and numerical thermo-hydraulic analysis for KSTAR TF coil structure cooling system has been conducted. The numerical analyses have been done to verify the engineering design of cooling using the commercial code, FLUENT and in-house code for calculating helium properties which varies with cooling tube's heat transfer. Through the engineering design process based on the steady heat balance concepts, the circular stainless steel tube with inner diameter of 4 mm for TF coil has been selected as cooling tube. From normal operation mode analysis results, total 28 cooling tubes were finally chosen. Also, three dimensional cool down analysis for TF coil with designed cooling tube was satisfied with next three design criteria. First is cooling work termination within a month, second is maximum temperature difference within 50 K in TF coil structure and third is exit helium pressure above 2 bar. Consequently, these cool down scenario results can afford to adopt as operating scenario data when KSTAR facilities operate.

  • PDF

공기공급 시스템에 적용되는 Vortex Tube의 에너지 분리특성에 관한 연구(II) -표면의 단열효과에 따른 영향-

  • 추홍록;상희선;이병화
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.05a
    • /
    • pp.19-24
    • /
    • 1998
  • vortex tube의 에너지 분리현상이 Ranque에 의해 처음으로 발견된 이래 vortex tube는 산업현장에서의 그 이용률이 점차 증대되고 있다. 특히, 최근에는 작업자의 쾌적한 작업환경을 조성하여 작업능률을 향상시킬 목적으로 제철소 등의 고온, 고습 작업장이나 분진, 석면, 유해먼지나 가스, 증기 등이 많이 발생하는 작업장에서 냉각복(air cool jacket) 또는 공기공급식 호흡보호구의 공기공급시스템에 많이 활용되고 있다. 이러한 vortex tube를 이용한 냉각복 및 호흡보호구는 작업자의 능률향상뿐만 아니라 직업병의 예방 및 안전측면에서 매우 효율성이 높아 그 적용범위가 점차 확대될 전망이다. (중략)

  • PDF

HEAT-UP AND COOL-DOWN TEMPERATURE-DEPENDENT HYDRIDE REORIENTATION BEHAVIORS IN ZIRCONIUM ALLOY CLADDING TUBES

  • Won, Ju-Jin;Kim, Myeong-Su;Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.681-688
    • /
    • 2014
  • Hydride reorientation behaviors of PWR cladding tubes under typical interim dry storage conditions were investigated with the use of as-received 250 and 485ppm hydrogen-charged Zr-Nb alloy cladding tubes. In order to evaluate the effect of typical cool-down processes on the radial hydride precipitation, two terminal heat-up temperatures of 300 and $400^{\circ}C$, as well as two terminal cool-down temperatures of 200 and $300^{\circ}C$, were considered. In addition, two cooling rates of 2.5 and $8.0^{\circ}C/min$ during the cool-down processes were taken into account along with zero stress or a tensile hoop stress of 150MPa. It was found that the 250ppm hydrogen-charged specimen experiencing the higher terminal heat-up temperature and the lower terminal cool-down temperature generated the highest number of radial hydrides during the cool-down process under 150MPa hoop tensile stress, which may be explained by terminal solid hydrogen solubilities for precipitation, and dissolution and remaining circumferential hydrides at the terminal heat-up temperatures. In addition, the slower cool-down rate generates the larger number of radial hydrides due to a cooling rate-dependent, longer residence time at a relatively high temperature that can accelerate the radial hydride nucleation and growth.