• Title/Summary/Keyword: Cool Down

Search Result 267, Processing Time 0.031 seconds

Effect of Recovery on Dynamic Strength after Isotonic or Isometric Cool-Down Exercise (등장성 혹은 등척성 정리운동이 동적근력회복에 미치는 효과)

  • Kim, Mun-Jung;Shin, Sung-Nyu;Im, Eun-Kyo;Yi, Chung-Hwi
    • Physical Therapy Korea
    • /
    • v.1 no.1
    • /
    • pp.67-74
    • /
    • 1994
  • Our purpose of this study was to determine the most effective cool-down exercise. The recovery times of dynamic strength after isometric and isotonic cool-down exercise were measured immediately post cool-down exercise, 30 seconds later and 60 seconds later in 30 normal, healthy men from 19 to 29 years, using dumbells(Model, Iron). The recovery time of dynamic strength had a significant positive correlation with isotonic and isometric cool-down exercise using the Chi-square method (p<0.01). Sources of significant differences were determined by the Wilcoxon signed-ranks test (p<0.01). The isometric cool-down exercise significantly shortened the recovery time of dynamic strength. We suggest that the isometric cool-down exercise may be more effective than isotonic cool-down exercise in shortening the recovery time of dynamic strength.

  • PDF

Effects of the initial charging pressure of gas on the cool-down characteristics of the Joule-Thomson cryocooler (초기충전압력이 쥴톰슨냉동기의 강온에 미치는 영향)

  • Hong, Yong-Ju;Park, Seong-Je;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2160-2164
    • /
    • 2008
  • Miniature Joule-Thomson cryocoolers have been widely used for rapid cooling of infrared detectors, probes of cryosurgery, thermal cameras, missile homing head and guidance system, due to their special features of simple configuration, compact structure and rapid cool-down characteristics. The cool-down time, the temperature at the cold end, the running time and the gas consumption are the important indicators of the performance of the J-T cryocooler. In this study, the initial cool-down stages of the J-T cryocooler were investigated by numerical simulations. The results show the effects of the initial charging pressures of gas on the cool-down time and the temperature at the cold end and the gas consumptions.

  • PDF

Effects of Warm-up and Cool-down Exercises for Preventing Delayed Onset Muscle Soreness on Pain and Muscle Activation (지연성근육통 예방을 위한 준비운동과 정리운동이 통증과 근활성도에 미치는 효과)

  • Oh, Duck-Won
    • Physical Therapy Korea
    • /
    • v.20 no.1
    • /
    • pp.28-35
    • /
    • 2013
  • The purpose of this study was to determine the effects of warm-up and cool-down exercises on pain and muscle activation of delayed onset muscle soreness after intense exercise. Delayed onset muscle soreness was caused by the eccentric exercise in the elbow flexor muscle of the non-dominant upper limb. Forty-four subjects volunteered to participate in this study and were randomly assigned to one of the following groups: warm-up and cool-down group, only warm-up group, only cool-down group, or control group with no intervention. The level of perceived pain using the visual analogue scale and electromyographic activation change in maximal voluntary isometric contraction were measured 4 times at the following times: 10 min, 24 hr, 48 hr, and 72 hr after the exercise. The results revealed the main effect between the groups and interaction effect between the group and measurement session (p<.05). The warm-up and cool-down group showed most favorable results with respect to reduced perceived pain level and increased muscle strength in most measurement sessions, and the only warm-up group showed significantly more decreased pain level than the control group at 24 hr and 48 hr and more increased muscle activation than the cool-down group at 48 hr (p<.05). However, there were no significant differences in pain level and muscle activation between the only cool-down group and control group at all measurement sessions (p>.05). The findings suggest that the warm-up exercise performed before an intense exercise had beneficial effects on the symptoms of delayed onset muscle soreness, whereas cool-down exercise performed after the intense exercise did not.

Effects of Different Cool-down Exercise Methods on Muscle Strength and Endurance of the Lower Extremities

  • Bae, Chang-Hwan;Cho, Sung-Hyoun;HwangBo, Gak
    • International Journal of Contents
    • /
    • v.8 no.2
    • /
    • pp.97-102
    • /
    • 2012
  • The purpose of this study was to investigate the effects of various cool-down exercises on muscular strength and endurance. After receiving a treadmill training for main exercise, the subjects conducted isotonic and isometric cool-down exercises four times for three weeks. Isotonic exercise with leg press of 10kg was repeated by 20 times and isometric exercise was conducted at flexion of hip joint and knee joint with leg press of 10kg by maintaining it for 6 sec and resting for 2 sec by 20 times. Muscular strength after exercise was measured with 1 RM by times and muscular endurance with maximum repetition frequency using time to keep for loading the weight of 10 RM and 65% of maximum muscular strength. As a result of comparing and analyzing measured values, exercise recovery shape of isotonic and isometric cool-down group were more effective than rest recovery shape of the control group. The isometric cool-down group was more effective than isotonic cool-down group. In conclusion, isometric exercise was more effective than isotonic exercise or simple rest on muscular strength and endurance.

HEAT-UP AND COOL-DOWN TEMPERATURE-DEPENDENT HYDRIDE REORIENTATION BEHAVIORS IN ZIRCONIUM ALLOY CLADDING TUBES

  • Won, Ju-Jin;Kim, Myeong-Su;Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.681-688
    • /
    • 2014
  • Hydride reorientation behaviors of PWR cladding tubes under typical interim dry storage conditions were investigated with the use of as-received 250 and 485ppm hydrogen-charged Zr-Nb alloy cladding tubes. In order to evaluate the effect of typical cool-down processes on the radial hydride precipitation, two terminal heat-up temperatures of 300 and $400^{\circ}C$, as well as two terminal cool-down temperatures of 200 and $300^{\circ}C$, were considered. In addition, two cooling rates of 2.5 and $8.0^{\circ}C/min$ during the cool-down processes were taken into account along with zero stress or a tensile hoop stress of 150MPa. It was found that the 250ppm hydrogen-charged specimen experiencing the higher terminal heat-up temperature and the lower terminal cool-down temperature generated the highest number of radial hydrides during the cool-down process under 150MPa hoop tensile stress, which may be explained by terminal solid hydrogen solubilities for precipitation, and dissolution and remaining circumferential hydrides at the terminal heat-up temperatures. In addition, the slower cool-down rate generates the larger number of radial hydrides due to a cooling rate-dependent, longer residence time at a relatively high temperature that can accelerate the radial hydride nucleation and growth.

Probabilistic Fracture Mechanics Analysis of Boling Water Reactor Vessel for Cool-Down and Low Temperature Over-Pressurization Transients

  • Park, Jeong Soon;Choi, Young Hwan;Jhung, Myung Jo
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.545-553
    • /
    • 2016
  • The failure probabilities of the reactor pressure vessel (RPV) for low temperature over-pressurization (LTOP) and cool-down transients are calculated in this study. For the cool-down transient, a pressure-temperature limit curve is generated in accordance with Section XI, Appendix G of the American Society of Mechanical Engineers (ASME) code, from which safety margin factors are deliberately removed for the probabilistic fracture mechanics analysis. Then, sensitivity analyses are conducted to understand the effects of some input parameters. For the LTOP transient, the failure of the RPV mostly occurs during the period of the abrupt pressure rise. For the cool-down transient, the decrease of the fracture toughness with temperature and time plays a main role in RPV failure at the end of the cool-down process. As expected, the failure probability increases with increasing fluence, Cu and Ni contents, and initial reference temperature-nil ductility transition ($RT_{NDT}$). The effect of warm prestressing on the vessel failure probability for LTOP is not significant because most of the failures happen before the stress intensity factor reaches the peak value while its effect reduces the failure probability by more than one order of magnitude for the cool-down transient.

A Study on the Thermal Analysis of Spray Cooling for the Membrane Type LNGC During the Cool-Down Period (급냉각기간에서 멤브레인형 LNGC의 분무냉각 열해석에 관한 연구)

  • Lee, Jung-Hye;Kim, Kyung-Kue;Ro, Sung-Tack;Chung, Han-Shik;Kim, Seong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.125-134
    • /
    • 2003
  • The present paper is concerned to the thermal analysis during the cool-down period of 138,000 m$^3$class GTT MARK-III membrane type LNG carrier servicing with LNG from the Middle East to Korea. It is the cool-down period that cools the insulation wall and the gas in LNG tank to avoid the thermal shock as the start of loading of -162$^{\circ}C$ LNG. For six hours of the standard cool-down period, the temperature of NG falls down from -4$0^{\circ}C$ to -13$0^{\circ}C$ and especially the mean temperature of the 1st barrier in the top side insulation wall falls down from -38.38$^{\circ}C$ to -122.42$^{\circ}C$ in case of IMO design condition. By the 3-D numerical calculation about the cargo tank and the cofferdam, the temperature variation in hulls and insulations is precisely predicted in this paper. And the mean temperature variation of gas is calculated as the function of the spraying rate by the heat balance model during the cool-down period.

Thermal Analysis for the GT-96 Membrane Type LNGC during the Cool-down Period (GT-96 멤브레인형 LNGC의 급냉기간에서의 열해석)

  • Lee, Jung-Hye;Choi, Hyun-Kue;Choi, Soon-Ho;Oh, Cheol;Kim, Myoung-Hwan;Kim, Kyung-Kun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1346-1351
    • /
    • 2004
  • This study is concerned with the thermal analysis during the cool-down period of 135,000 $m^3$ class GT-96 membrane type LNG carrier under IMO design condition. The cool-down is performed to cool the insulation wall and the natural gas in cargo tank for six hours to avoid the thermal shock at the start of loading of $-163^{\circ}C$ LNG. During the cool-down period, the spraying rate for the NG cooling decreases as the temperature of NG falls clown from $-40^{\circ}C$ to $-130^{\circ}C$ and the spraying rate for the insulation wall cooling increases as the temperature gradient of the insulation wall is large. It was confirmed that there existed the largest temperature decrease at the 1 st barrier and 1st insulation, which are among the insulation wall, especially in the top side of the insulation wall. By the 3-D numerical calculation about the cargo tank and the cofferdam during the cool-down period, the temperature variation in hulls and insulations is precisely predicted.

  • PDF

Design and Performance Test of a Direct Cooling Equipment for Hydrogen Liquefaction (수소액화용 직접냉각장치의 설계 및 성능시험)

  • Baik, Jong-Hoon;Kang, Byung-Ha;Chang, Ho-Myung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.7 no.2
    • /
    • pp.121-128
    • /
    • 1996
  • A direct cooling equipment for hydrogen liquefaction has been developed and tested. A direct cooling equipment consists of a liquefaction vessel, a radiation shield, a cryostat and a GM refrigerator. The cool-down and warm-up characteristics of the liquefaction apparatus have been investigated in detail. It is found that the hydrogen starts to be liquefied in the liquefaction vessel after 45 minutes of cool-down. The cool-down and warm-up tests of helium gas are also performed. The cool-down and warm-up characteristics of helium gas are found to be very different from those of hydrogen gas, since helium is not liquefied under the present operating conditions. When the liquefaction vessel is evacuated, natural convection phenomena of charged gas in liquefaction vessel can be removed. It is seen that the cool-down time of liquefaction vessel is substantially increased in vacuum environment.

  • PDF

Thermal Analysis Comparison of IMO with USCG Design Condition for the INGC During the Cool-down Period (급냉각기간에서 IMO설계조건과 USCG 설계조건에 대한 LMGC 화물탱크의 열해석 비교)

  • Lee, Jung-Hye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1390-1397
    • /
    • 2004
  • This study is concerned with the thermal analysis during the cool-down period of 135,000㎥ class GT-96 membrane type LNG carrier under IMO and USCG design condition. During the cool-down period, the spraying rate for the NG cooling decreases as the temperature of NG falls down from -4$0^{\circ}C$ to -l3$0^{\circ}C$, and the spraying rate for the cooling of the insulation wall increases as the temperature gradient of the insulation wall is large. It was confirmed that there existed the largest temperature decrease at the first barrier and the first insulation, which are among the insulation wall, especially in the top side of the insulation wall under IMO and USCG design condition. Also, as the NG temperature distribution is fixed, the outer temperature condition under the design condition has influence on the temperature variation at the insulation. By the 3-D numerical calculation about the cargo tank and the cofferdam during the cool-down period, the temperature variation in hulls and insulations is precisely predicted under IMO and USCG design condition. From the comparison between two conditions; IMO design condition shows more severe temperature gradient than USCG design condition, therefore, it provides the conservative estimation of the BOG.