• 제목/요약/키워드: Convolutional neural network(CNN)

검색결과 983건 처리시간 0.039초

심층신경망 구조에 따른 구개인두부전증 환자 음성 인식 향상 연구 (A study on recognition improvement of velopharyngeal insufficiency patient's speech using various types of deep neural network)

  • 김민석;정재희;정보경;윤기무;배아라;김우일
    • 한국음향학회지
    • /
    • 제38권6호
    • /
    • pp.703-709
    • /
    • 2019
  • 본 논문에서는 구개인두부전증(VeloPharyngeal Insufficiency, VPI) 환자의 음성을 효과적으로 인식하기 위해 컨볼루션 신경망 (Convolutional Neural Network, CNN), 장단기 모델(Long Short Term Memory, LSTM) 구조 신경망을 은닉 마르코프 모델(Hidden Markov Model, HMM)과 결합한 하이브리드 구조의 음성 인식 시스템을 구축하고 모델 적응 기법을 적용하여, 기존 Gaussian Mixture Model(GMM-HMM), 완전 연결형 Deep Neural Network(DNN-HMM) 기반의 음성 인식 시스템과 성능을 비교한다. 정상인 화자가 PBW452단어를 발화한 데이터를 이용하여 초기 모델을 학습하고 정상인 화자의 VPI 모의 음성을 이용하여 화자 적응의 사전 모델을 생성한 후에 VPI 환자들의 음성으로 추가 적응 학습을 진행한다. VPI환자의 화자 적응 시에 CNN-HMM 기반 모델에서는 일부층만 적응 학습하고, LSTM-HMM 기반 모델의 경우에는 드롭 아웃 규제기법을 적용하여 성능을 관찰한 결과 기존 완전 연결형 DNN-HMM 인식기보다 3.68 % 향상된 음성 인식 성능을 나타낸다. 이러한 결과는 본 논문에서 제안하는 LSTM-HMM 기반의 하이브리드 음성 인식 기법이 많은 데이터를 확보하기 어려운 VPI 환자 음성에 대해 보다 향상된 인식률의 음성 인식 시스템을 구축하는데 효과적임을 입증한다.

물체 검출 컨벌루션 신경망 설계를 위한 효과적인 네트워크 파라미터 추출 ((Searching Effective Network Parameters to Construct Convolutional Neural Networks for Object Detection))

  • 김누리;이동훈;오성회
    • 정보과학회 논문지
    • /
    • 제44권7호
    • /
    • pp.668-673
    • /
    • 2017
  • 최근 몇 년간 딥러닝(deep learning)은 음성 인식, 영상 인식, 물체 검출을 비롯한 다양한 패턴인식 분야에서 혁신적인 성능 발전을 거듭해왔다. 그에 비해 네트워크가 어떻게 작동하는지에 대한 깊은 이해는 잘 이루어지지 않고 있다. 본 논문은 효과적인 신경망 네트워크를 구성하기 위해 네트워크 파라미터들이 신경망 내부에서 어떻게 작동하고, 어떤 역할을 하고 있는지 분석하였다. Faster R-CNN 네트워크를 기반으로 하여 신경망의 과적합(overfitting)을 막는 드랍아웃(dropout) 확률과 앵커 박스 크기, 그리고 활성 함수를 변화시켜 학습한 후 그 결과를 분석하였다. 또한 드랍아웃과 배치 정규화(batch normalization) 방식을 비교해보았다. 드랍아웃 확률은 0.3일 때 가장 좋은 성능을 보였으며 앵커 박스의 크기는 최종 물체 검출 성능과 큰 관련이 없다는 것을 알 수 있었다. 드랍아웃과 배치 정규화 방식은 서로를 완전히 대체할 수는 없는 것을 확인할 수 있었다. 활성화 함수는 음수 도메인의 기울기가 0.02인 leaky ReLU가 비교적 좋은 성능을 보였다.

CNN기반의 온라인 수어통역 상담 시스템에 관한 연구 (CNN-based Online Sign Language Translation Counseling System)

  • 박원철;박구락
    • 융합정보논문지
    • /
    • 제11권5호
    • /
    • pp.17-22
    • /
    • 2021
  • 청각장애인들은 수어통역 없이 상담서비스를 이용하기에는 어려움이 있다. 수어 통역사 인력이 많이 부족하여 수어 통역사까지 상담이 연결되는데 많은 시간이 걸리거나 연결이 되지 않는 경우가 많이 발생하고 있다. 이에 본 논문에서는 OpenCV와 CNN(Convolutional Neural Network)을 이용하여 수어를 영상으로 촬영하고 수어 동작을 인식하여 수어가 뜻하는 의미를 텍스트 형태의 데이터로 변환하여 사용자에게 제공하는 시스템을 제안한다. 상담사는 저장된 수어번역 상담내용을 열람하여 상담을 진행할 수 있다. 전문 수어 통역사가 없어도 상담이 가능하여 수어 통역사를 기다려야 하는 부담을 줄일 수 있다. 제안 시스템을 청각장애인 상담서비스에 적용할 경우 상담 효과의 향상과 향후 청각장애인 상담에 관한 학문적 연구를 촉진하는 계기가 될 것으로 기대된다.

Content-Aware Convolutional Neural Network for Object Recognition Task

  • Poernomo, Alvin;Kang, Dae-Ki
    • International journal of advanced smart convergence
    • /
    • 제5권3호
    • /
    • pp.1-7
    • /
    • 2016
  • In existing Convolutional Neural Network (CNNs) for object recognition task, there are only few efforts known to reduce the noises from the images. Both convolution and pooling layers perform the features extraction without considering the noises of the input image, treating all pixels equally important. In computer vision field, there has been a study to weight a pixel importance. Seam carving resizes an image by sacrificing the least important pixels, leaving only the most important ones. We propose a new way to combine seam carving approach with current existing CNN model for object recognition task. We attempt to remove the noises or the "unimportant" pixels in the image before doing convolution and pooling, in order to get better feature representatives. Our model shows promising result with CIFAR-10 dataset.

CNN Based Lithography Hotspot Detection

  • Shin, Moojoon;Lee, Jee-Hyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권3호
    • /
    • pp.208-215
    • /
    • 2016
  • The lithography hotspot detection process is crucial for semiconductor design development process. But, the lithography hotspot detection using optical simulation method takes much time and it slowdown the layout design development cycle. Though the geometry based approach is introduced as an alternative, it still revealed low detection performance and sophisticated framework. To solve this problem, we introduce a deep convolutional neural network based hotspot detection method. Our method made better results in ICCCAD 2012 dataset. To reach this score, we used lots of technical effort to improve the result in addition to just utilizing the nature of convolutional neural network. Inspection region reduction, data augmentation, DBSCAN clustering helped our work more stable and faster.

합성곱신경망을 활용한 과구동기 시스템을 가지는 소형 무인선의 추진기 고장 감지 (Fault Detection of Propeller of an Overactuated Unmanned Surface Vehicle based on Convolutional Neural Network)

  • 백승대;우주현
    • 대한조선학회논문집
    • /
    • 제59권2호
    • /
    • pp.125-133
    • /
    • 2022
  • This paper proposes a fault detection method for a Unmanned Surface Vehicle (USV) with overactuated system. Current status information for fault detection is expressed as a scalogram image. The scalogram image is obtained by wavelet-transforming the USV's control input and sensor information. The fault detection scheme is based on Convolutional Neural Network (CNN) algorithm. The previously generated scalogram data was transferred learning to GoogLeNet algorithm. The data are generated as scalogram images in real time, and fault is detected through a learning model. The result of fault detection is very robust and highly accurate.

A Study on the Life Prediction of Lithium Ion Batteries Based on a Convolutional Neural Network Model

  • Mi-Jin Choi;Sang-Bum Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권3호
    • /
    • pp.118-121
    • /
    • 2023
  • Recently, green energy support policies have been announced around the world in accordance with environmental regulations, and asthe market grows rapidly, demand for batteries is also increasing. Therefore, various methodologies for battery diagnosis and recycling methods are being discussed, but current accurate life prediction of batteries has limitations due to the nonlinear form according to the internal structure or chemical change of the battery. In this paper, CS2 lithium-ion battery measurement data measured at the A. James Clark School of Engineering, University of Marylan was used to predict battery performance with high accuracy using a convolutional neural network (CNN) model among deep learning-based models. As a result, the battery performance was predicted with high accuracy. A data structure with a matrix of total data 3,931 ☓ 19 was designed as test data for the CS2 battery and checking the result values, the MAE was 0.8451, the RMSE was 1.3448, and the accuracy was 0.984, confirming excellent performance.

LRCN을 이용한 리튬 이온 배터리의 건강 상태 추정 (State of Health Estimation for Lithium-Ion Batteries Using Long-term Recurrent Convolutional Network)

  • 홍선리;강모세;정학근;백종복;김종훈
    • 전력전자학회논문지
    • /
    • 제26권3호
    • /
    • pp.183-191
    • /
    • 2021
  • A battery management system (BMS) provides some functions for ensuring safety and reliability that includes algorithms estimating battery states. Given the changes caused by various operating conditions, the state-of-health (SOH), which represents a figure of merit of the battery's ability to store and deliver energy, becomes challenging to estimate. Machine learning methods can be applied to perform accurate SOH estimation. In this study, we propose a Long-Term Recurrent Convolutional Network (LRCN) that combines the Convolutional Neural Network (CNN) and Long Short-term Memory (LSTM) to extract aging characteristics and learn temporal mechanisms. The dataset collected by the battery aging experiments of NASA PCoE is used to train models. The input dataset used part of the charging profile. The accuracy of the proposed model is compared with the CNN and LSTM models using the k-fold cross-validation technique. The proposed model achieves a low RMSE of 2.21%, which shows higher accuracy than others in SOH estimation.

저연산량의 효율적인 콘볼루션 신경망 (Efficient Convolutional Neural Network with low Complexity)

  • 이찬호;이중경;호콩안
    • 전기전자학회논문지
    • /
    • 제24권3호
    • /
    • pp.685-690
    • /
    • 2020
  • 휴대용 기기나 에지 단말을 위한 CNN인 MobileNet V2를 기반으로 연산량을 크게 줄이면서도 정확도는 증가시킨 효율적인 인공신경망 네트워크 구조를 제안한다. 제안하는 구조는 Bottleneck 층 구조를 유지하면서 확장 계수를 증가시키고 일부 층을 제거하는 등의 변화를 통해 연산량을 절반 이하로 줄였다. 설계한 네트워크는 ImageNet100 데이터셋을 이용하여 분류 정확도와 CPU 및 GPU에서의 연산 시간을 측정하여 그 성능을 검증 하였다. 또한, 현재 딥러닝 가속기로 널리 이용하는 GPU에서 네트워크 구조에 따라 동작 성능이 달라짐도 보였다.

CNN을 이용한 소셜 이미지 자동 태깅 (Automatic Tagging for Social Images using Convolution Neural Networks)

  • 장현웅;조수선
    • 정보과학회 논문지
    • /
    • 제43권1호
    • /
    • pp.47-53
    • /
    • 2016
  • 인터넷이 급속히 발달하는 가운데 스마트폰, 디지털 카메라, 블랙박스 등의 기기에서 수집되는 방대한 영상 데이터가 소셜 미디어 사이트를 통해 빠르게 공유되고 있다. 소셜 미디어 공유 사이트에서는 일반적으로 이미지의 태그 정보를 사용하는데, 멀티미디어를 공유하는 방법이 쉬워지고 그 양이 폭발적으로 증가함에 따라 이미지에 태그를 붙여야 하는 일은 번거로움이 되고 있다. 또한 태그가 잘못 붙여지거나 안 붙은 경우에는 이미지 검색 정확도가 떨어질 가능성이 있다. 본 논문에서는 이미지의 내용정보를 이용하여 자동으로 이미지로부터 태그를 추출하는 방법을 제안한다. 제안하는 방법은 ImageNet에서 제공하는 대용량의 이미지 데이터와 라벨을 CNN(Convolutional Neural Network) 딥러닝 기법으로 학습시킨 후, 인스타그램 이미지로부터 라벨 정보를 추출하는 것이다. 추출된 라벨 정보를 이용하여 자동 태깅한 후, 검색에 활용했을 때 인스타그램의 기존 검색보다 높은 정확도를 가지고 있음을 알 수 있었다.