• Title, Summary, Keyword: Convolution Parse Tree Kernels

Search Result 4, Processing Time 0.036 seconds

Extraction of Relationships between Scientific Terms based on Composite Kernels (혼합 커널을 활용한 과학기술분야 용어간 관계 추출)

  • Choi, Sung-Pil;Choi, Yun-Soo;Jeong, Chang-Hoo;Myaeng, Sung-Hyon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.12
    • /
    • pp.988-992
    • /
    • 2009
  • In this paper, we attempted to extract binary relations between terminologies using composite kernels consisting of convolution parse tree kernels and WordNet verb synset vector kernels which explain the semantic relationships between two entities in a sentence. In order to evaluate the performance of our system, we used three domain specific test collections. The experimental results demonstrate the superiority of our system in all the targeted collection. Especially, the increase in the effectiveness on KREC 2008, 8% in F1, shows that the core contexts around the entities play an important role in boosting the entire performance of relation extraction.

Performance Enhancement of Tree Kernel-based Protein-Protein Interaction Extraction by Parse Tree Pruning and Decay Factor Adjustment (구문 트리 가지치기 및 소멸 인자 조정을 통한 트리 커널 기반 단백질 간 상호작용 추출 성능 향상)

  • Choi, Sung-Pil;Choi, Yun-Soo;Jeong, Chang-Hoo;Myaeng, Sung-Hyon
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.2
    • /
    • pp.85-94
    • /
    • 2010
  • This paper introduces a novel way to leverage convolution parse tree kernel to extract the interaction information between two proteins in a sentence without multiple features, clues and complicated kernels. Our approach needs only the parse tree alone of a candidate sentence including pairs of protein names which is potential to have interaction information. The main contribution of this paper is two folds. First, we show that for the PPI, it is imperative to execute parse tree pruning removing unnecessary context information in deciding whether the current sentence imposes interaction information between proteins by comparing with the latest existing approaches' performance. Secondly, this paper presents that tree kernel decay factor can play an pivotal role in improving the extraction performance with the identical learning conditions. Consequently, we could witness that it is not always the case that multiple kernels with multiple parsers perform better than each kernels alone for PPI extraction, which has been argued in the previous research by presenting our out-performed experimental results compared to the two existing methods by 19.8% and 14% respectively.

Relation Extraction Using Convolution Tree Kernel Expanded with Entity Features

  • Qian, Longhua;Zhou, Guodong;Zhu, Qiaomin;Qian, Peide
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • /
    • pp.415-421
    • /
    • 2007
  • This paper proposes a convolution tree kernel-based approach for relation extraction where the parse tree is expanded with entity features such as entity type, subtype, and mention level etc. Our study indicates that not only can our method effectively capture both syntactic structure and entity information of relation instances, but also can avoid the difficulty with tuning the parameters in composite kernels. We also demonstrate that predicate verb information can be used to further improve the performance, though its enhancement is limited. Evaluation on the ACE2004 benchmark corpus shows that our system slightly outperforms both the previous best-reported feature-based and kernel-based systems.

  • PDF

Relation Extraction based on Extended Composite Kernel using Flat Lexical Features (평면적 어휘 자질들을 활용한 확장 혼합 커널 기반 관계 추출)

  • Chai, Sung-Pil;Jeong, Chang-Hoo;Chai, Yun-Soo;Myaeng, Sung-Hyon
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.8
    • /
    • pp.642-652
    • /
    • 2009
  • In order to improve the performance of the existing relation extraction approaches, we propose a method for combining two pivotal concepts which play an important role in classifying semantic relationships between entities in text. Having built a composite kernel-based relation extraction system, which incorporates both entity features and syntactic structured information of relation instances, we define nine classes of lexical features and synthetically apply them to the system. Evaluation on the ACE RDC corpus shows that our approach boosts the effectiveness of the existing composite kernels in relation extraction. It also confirms that by integrating the three important features (entity features, syntactic structures and contextual lexical features), we can improve the performance of a relation extraction process.