• 제목/요약/키워드: Conveying Fluid

검색결과 186건 처리시간 0.026초

내부 유체의 조화 가진에 의한 배관의 주파수응답해석 (Frequency Response Analysis of Pipe Conveying Harmonically Excited Fluid)

  • 오준석
    • 한국군사과학기술학회지
    • /
    • 제8권1호
    • /
    • pp.81-91
    • /
    • 2005
  • It is well known that the natural frequencies of the pipe come to be lower as internal fluid velocity and pressure increase, and the pipe will be unstable if the fluid velocity is higher than critical velocity. But even if the velocity of the fluid below the critical velocity, resonance will be caused by pulsation of the fluid. So the effects of pulsating fluid in pipe should be also taken into consideration for better analysis. The research of the vibration of piping system due to a fluid pulsation has been studied by many people. But most of them are dealt with determining the boundary between stable and unstable region without analyzing forced response in the stable region. In this study, not only stability analysis but also forced response analysis, which is caused by harmonically excited fluid especially, is conducted. In order to analyze the system numerically, the descretized equation is formulated by using FEM(Finite Element Method). And the results of this method are compared with those of AMM(Assumed Mode Method) which were used by many researcher earlier.

유체맥동을 고려한 배관계의 진동해석 (Vibration Analysis of Pipes Considering Fluid Pulsation)

  • 서영수;정석현;이성현;홍진숙;정의봉
    • 한국소음진동공학회논문집
    • /
    • 제16권10호
    • /
    • pp.1050-1056
    • /
    • 2006
  • In this paper, a new method for the stability analysis of a pipe conveying fluid which pulsates periodically is presented. The finite element model is formulated liking into consideration of the effects of the fluid pulsating in a pipe. The damping and stiffness matrices in the finite element equation vary with time due to pulsating fluid. Coupled effects of several harmonic components in the velocity of fluid to a pipe is discussed. A new unstable region appears which will not appear in the stability analysis of single pulsating frequency. A method to directly estimate the forced response of pipe is also discussed. The results presented in this paper are verified by the time domain analysis.

내부 유체 유동을 포함하는 원통 셸의 유한요소 진동해석 (Finite Element Vibration Analysis of Cylindrical Shells with Internal Fluid Flow)

  • 서영수;정의봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.911-916
    • /
    • 2003
  • A method for the dynamic analysis of thin-walled cylindrical shell conveying steady fluid flow presents. The dynamics of thin-walled shell is based on Sanders' theory and the fluid flow in cylindrical shell is treated inviscid, incompressible fluid. A dynamic coupling conditions at fluid-structure interface is used. The equations of motion are solved by a finite element method and validated by comparing the natural frequency with other published results and Nastran. The influence of fluid velocity on the frequency response function is illustrated and discussed.

  • PDF

전달행렬법을 이용한 3차원 파이프 계의 진동해석 (Vibration Analysis of Three-Dimensional Piping System by Transfer Matrix Method)

  • 이동명
    • 한국생산제조학회지
    • /
    • 제7권6호
    • /
    • pp.110-116
    • /
    • 1998
  • For the vibration analysis of 3-dimensional piping system containing fluid flow, a transfer matrix method is presented. The fluid velocity and pressure were considered, that coupled to longitudinal and flexural vibrations. Transfer matrices and point matrices were derived from direct solutions of the differential equations of motion of pipe conveying fluids, and the variations of natural frequency with flow velocity for 3-dimensional piping system were investigated.

  • PDF

Dynamic analysis of immersion concrete pipes in water subjected to earthquake load using mathematical methods

  • Haghighi, Mohammad Salkhordeh;Keikha, Reza;Heidari, Ali
    • Earthquakes and Structures
    • /
    • 제15권4호
    • /
    • pp.361-367
    • /
    • 2018
  • In this paper, dynamic analysis of concrete pipe submerged in the fluid and conveying fluid is studied subjected to earthquake load. The structure is modeled by classical shell theory and the force induced by internal fluid is obtained by Navier-Stokes equation. Applying energy method and Hamilton's principle, the motion equations are derived. Based on Navier and Newmark methods, the dynamic deflection of the structure is calculated. The effects of different parameters such as mode number, thickness to radius ratios, length to radius ratios, internal and external fluid are discussed on the seismic response of the structure. The results show that considering internal and external fluid, the dynamic deflection increases.

유동이 있는 배관-마운트 계의 진동저감설계 CAE Tool개발 (Development of CAE tool for reducing vibration of pipe-mount system conveying fluid)

  • 이성현;전수홍;정의봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.472-473
    • /
    • 2008
  • In this research, the finite element model is formulated taking into consideration of the effects of the fluid flow in a pipe. The characteristic of vibration is presented using mass, damping and stiffness matrix in the finite element equation of this pipe system. The displacement distribution of pipe system caused by fluid force is discussed. The method for optimizing the location of mount and the value of mount stiffness to reduce the vibration of pipe system is introduced.

  • PDF

유체를 운반하는 배관계의 진동 저감을 위한 마운트 설계 (Mount design to reduce the vibration of pipe system conveying fluid)

  • 이성현;정의봉;정철웅;함일배
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1437-1441
    • /
    • 2007
  • This paper formulates the finite element model is formulated taking into consideration of the effects of the fluid flow in a pipe. The characteristic of vibration is presented using mass, damping and stiffness matrix in the finite element equation of this pipe system. The displacement distribution of pipe system caused by fluid force is discussed. The variation of vibration of a pipe system according the change of mount stiffness is discussed.

  • PDF

Optimization analysis on collection efficiency of vacuum cleaner based on two-fluid and CFD-DEM model

  • Wang, Lian;Chu, Xihua
    • Advances in Computational Design
    • /
    • 제5권3호
    • /
    • pp.261-276
    • /
    • 2020
  • The reasonable layout of vacuum cleaner can effectively improve the collection efficiency of iron filings generated in the process of steel production. Therefore, in this study, the CFD-DEM coupling model and two-fluid model are used to calculate the iron filings collection efficiency of vacuum cleaner with different inclination/cross-sectional area, pressure drop and inlet angle. The results are as follows: The CFD-DEM coupling method can truly reflect the motion mode of iron filings in pneumatic conveying. Considering the instability and the decline of the growth rate of iron filings collection efficiency caused by high pressure drop, the layout of 75° inclination is suggested, and the optimal pressure drop is 100Pa. The optimal simulation results based on two-fluid model show that when the inlet angle and pressure drop are in the range of 45°~65° and 70Pa~100Pa, larger mass flow rate of iron filings can be obtained. It is hoped that the simulation results can offer some suggestion to the layout of vacuum cleaner in the rolling mill.

외부 가진을 받는 관로계에서 볼트 결합부의 동특성 (Dynamic Characteristics of Bolted Joint in Tube Line by External Vibration)

  • 박태원;김영권;신귀수
    • 동력기계공학회지
    • /
    • 제5권4호
    • /
    • pp.38-43
    • /
    • 2001
  • This paper describes the effect of dynamic characteristics in tube line by external vibration conveying fluid with the power steering system. By the experimental analysis we found out that the factor of system vibration is the fluid-structure interaction of tube line. In fluid-filled tube system we study on the influence that the natural frequency of system and the frequency of wave motion produce upon through experiment. Experiments are modal test, frequency response function in continuous system, and vibrating tests when the system is driving with bolted clamping joint condition. From the results of the experimental studies, we obtained that the natural frequencies of system are very important than the wave induced vibrations. And we found that the tendency of system vibration level was decreased by bolting force, bolting condition and clamping distance.

  • PDF

변위 가정법을 이용한 배관 시스템의 정상 상태 진동 해석 (The steady-state vibration analysis of piping system by applying displacement assumption method)

  • 이성현;정의봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.827-830
    • /
    • 2011
  • The equation of motion for the piping system conveying harmonically pulsating fluid is presented. When pulsating fluid flows, the properties of this system like mass, stiffness and damp is changing according to fluid fluctuation. To solve the steady-state time response of this system, numerical integration method of differential equation was usually used. But this method has some problem such time consuming method and difficulty of converging. Therefore this research suggests reliable and efficient numerical method to solve steady-state time response of piping system by using displacement assumption method.

  • PDF