• Title/Summary/Keyword: Converters

Search Result 1,812, Processing Time 0.019 seconds

PV Inverter Operation according to DC Capacitor Aging (직류 커패시터 노후화에 따른 PV 인버터 동작)

  • Yongho Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.149-155
    • /
    • 2023
  • Photovoltaic power generation is the most familiar power generation facility among new and renewable energies, and its supply began to expand about 10 years ago, and at this point, interest in solutions and technologies for system maintenance management is increasing. In particular, it is necessary to take measures to maximize the overall efficiency of the solar power generation system, whether or not there is an abnormality in the solar power generation system, and when to replace parts. The PV inverter, one element of the photovoltaic power generation system, is a power conversion system that relies on power switching devices, and DC-Link capacitors are used according to the configuration of DC/DC converters and DC-AC inverters. These DC capacitors also affect system safety (Safety) through renewable energy facilities due to the decrease in power generation of PV inverters, power loss, and increase in harmonics (THD, total distortion of AC output current) due to aging and deterioration due to long-term use. factors can be analyzed. Therefore, in this paper, the PV inverter operating characteristics according to the DC capacitor capacity state currently operating in the photovoltaic power generation system were considered, and research contents were proposed to secure the safety and reliability of renewable energy facilities.

Analysis of Quantization Noise in Magnetic Resonance Imaging Systems (자기공명영상 시스템의 양자화잡음 분석)

  • Ahn C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.8 no.1
    • /
    • pp.42-49
    • /
    • 2004
  • Purpose : The quantization noise in magnetic resonance imaging (MRI) systems is analyzed. The signal-to-quantization noise ratio (SQNR) in the reconstructed image is derived from the level of quantization in the signal in spatial frequency domain. Based on the derived formula, the SQNRs in various main magnetic fields with different receiver systems are evaluated. From the evaluation, the quantization noise could be a major noise source determining overall system signal-to-noise ratio (SNR) in high field MRI system. A few methods to reduce the quantization noise are suggested. Materials and methods : In Fourier imaging methods, spin density distribution is encoded by phase and frequency encoding gradients in such a way that it becomes a distribution in the spatial frequency domain. Thus the quantization noise in the spatial frequency domain is expressed in terms of the SQNR in the reconstructed image. The validity of the derived formula is confirmed by experiments and computer simulation. Results : Using the derived formula, the SQNRs in various main magnetic fields with various receiver systems are evaluated. Since the quantization noise is proportional to the signal amplitude, yet it cannot be reduced by simple signal averaging, it could be a serious problem in high field imaging. In many receiver systems employing analog-to-digital converters (ADC) of 16 bits/sample, the quantization noise could be a major noise source limiting overall system SNR, especially in a high field imaging. Conclusion : The field strength of MRI system keeps going higher for functional imaging and spectroscopy. In high field MRI system, signal amplitude becomes larger with more susceptibility effect and wider spectral separation. Since the quantization noise is proportional to the signal amplitude, if the conversion bits of the ADCs in the receiver system are not large enough, the increase of signal amplitude may not be fully utilized for the SNR enhancement due to the increase of the quantization noise. Evaluation of the SQNR for various systems using the formula shows that the quantization noise could be a major noise source limiting overall system SNR, especially in three dimensional imaging in a high field imaging. Oversampling and off-center sampling would be an alternative solution to reduce the quantization noise without replacement of the receiver system.

  • PDF