• Title/Summary/Keyword: Converter-based generator

검색결과 148건 처리시간 0.022초

Development of a Novel 30 kV Solid-state Switch for Damped Oscillating Voltage Testing System

  • Hou, Zhe;Li, Hongjie;Li, Jing;Ji, Shengchang;Huang, Chenxi
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.786-797
    • /
    • 2016
  • This paper describes the design and development of a novel semiconductor-based solid-state switch for damped oscillating voltage test system. The proposed switch is configured as two identical series-connected switch stacks, each of which comprising 10 series-connected IGBT function units. Each unit consists of one IGBT, a gate driver, and an auxiliary voltage sharing circuit. A single switch stack can block 20 kV-rated high voltage, and two stacks in series are proven applicable to 30 kV-rated high voltage. The turn-on speed of the switch is approximately 250 ns. A flyback topology-based power supply system with a front-end power factor correction is built for the drive circuit by loosely inductively coupling each unit with a ferrite core to the primary side of a power generator to obtain the advantages of galvanic isolation and compact size. After the simulation, measurement, and estimation of the parasitic effect on the gate driver, a prototype is assembled and tested under different operating regimes. Experimental results are presented to demonstrate the performance of the developed prototype.

Improved Grid Voltage Control Strategy for Wind Farms with DFIGs Connected to Distribution Networks

  • Zhang, Xueguang;Pan, Weiming;Liu, Yicheng;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • 제12권3호
    • /
    • pp.495-502
    • /
    • 2012
  • This paper presents an improved grid voltage control strategy for wind farms with doubly-fed induction generators (DFIGs) connected to distribution networks based on an analysis of the operation limits of DFIG systems. A modified reactive power limit calculation method in different operation states is proposed and a reactive power control strategy during grid voltage dips/rises is further discussed. A control strategy for compensating unbalanced grid voltage, based on DFIG systems, by injecting negative sequence current into the grid through the grid side converter (GSC) is proposed. In addition, the negative current limit of the GSC is discussed. The distribution principle of the negative sequence current among the different DFIG systems in a wind farm is also introduced. The validity of the proposed voltage control strategy is demonstrated by Matlab/Simulink simulations. It is shown that the stability of a wind farm and the power grid can be improved with the proposed strategy.

A Calculation Method for the Nonlinear Crowbar Circuit of DFIG Wind Generation based on Frequency Domain Analysis

  • Luo, Hao;Lin, Mingyao;Cao, Yang;Guo, Wei;Hao, Li;Wang, Peng
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1884-1893
    • /
    • 2016
  • The ride-through control of a doubly-fed induction generator (DFIG) for the voltage sags on wind farms utilizing crowbar circuits by which the rotor side converter (RSC) is disabled has being reported in many literatures. An analysis and calculation of the transient current when the RSC is switched off are of significance for carrying out the low voltage ride through (LVRT) of a DFIG. The mathematical derivation is highlighted in this paper. The zero-state and zero-input responses of the transient current in the frequency domain through a Laplace transformation are investigated, and the transient components in the time domain are achieved. With the characteristics worked out from the linear resolving without modeling simplification, the selection of the resistance in the linear crowbar circuit and the value conversion from a linear circuit to a nonlinear one is proposed to setup the attenuation rate. In terms of grid code requirements, the theoretical analysis for the time constant of the transient components attenuation insures the controllability when the excitation of the RSC is resumed and it guarantees the reserved time for the response of the reactive power compensation. Simulations are executed in MATLAB/SIMPOWER and experiments are carried out to validate the theoretical analysis. They indicate that the calculation method is effective for selection of the resistance in a crowbar circuit for LVRT operations.

GPS 수신 시스템에서 디지탈 지연동기 루프 회로 설계 및 분석 (The Circuit Design and Analysis of the Digital Delay-Lock Loop in GPS Receiver System)

  • 금홍식;정은택;이상곤;권태환;유흥균
    • 한국통신학회논문지
    • /
    • 제19권8호
    • /
    • pp.1464-1474
    • /
    • 1994
  • GPS(Global Positional System)는 인공위성을 이용하여 언제, 어디서나 자신의 위치를 정확히 측정할 수 있는 항법 시스템이다. 본 논문에서는 이 GPS 신호에서 항법 데이터를 복원하는 수신기의 지연동기 루프를 이론적으로 해석하고, 디지털 로직으로 설계하였다. 또한 동기과정의 논리동작을 분석하였다. 설계한 시스템은 수신된 C/A(coarse/acquisition) 코드와 수신기에서 발생된 C/A 코드와의 상관값을 구하는 상관기, 선택된 위성의 C/A 코드를 발생시키는 C/A코드 발생기, 그리고 C/A코드의 위상과 클럭속도를 조절할 수 있도록 C/A 코드 발생기의 클럭을 만드는 직접 디지탈 클럭 발생기로 구성된다. 제안한 디지탈 지연동기루프 시스템을 해석한 결과, 시스템 입력 신호전력이 -113.98dB이상이면 시스템이 90%이상의 검파 능력을 갖음을 확인하였다. 디지탈동기루프이 입력신호 즉, A/D 컴버터 전단의 입력신호 크기에 따라 디지탈 동기 루프의 성능 그래프와 문턱전압의 크기에 따른 성능분석의 그래프를 시뮬레이션을 통하여 분석하였다. 그리고 설계된 디지탈 지연동기루프를 로직 시뮬레이션한 결과, GPS 항법 데이타를 정확히 복원함을 확인하였다. 개선됨을 알 수 있었다.

  • PDF

Compensation of Unbalanced PCC Voltage in Off-shore Wind Farms of PMSG Type Turbine

  • Kang, Jayoon;Han, Daesu;Suh, Yongsug;Jung, Byoungchang;Kim, Jeongjoong;Park, Jonghyung;Choi, Youngjoon
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2014년도 전력전자학술대회 논문집
    • /
    • pp.215-216
    • /
    • 2014
  • This paper proposes a control algorithm for permanent magnet synchronous generator with a back-to-back three-level neutral-point clamped voltage source converter in a medium-voltage offshore wind power system under unbalanced grid conditions. The proposed control algorithm particularly compensates for the unbalanced grid voltage at the point of common coupling in a collector bus of offshore wind power system. This control algorithm has been formulated based on the symmetrical components in positive and negative rotating synchronous reference frames under generalized unbalanced operating conditions. Instantaneous active and reactive power are described in terms of symmetrical components of measured grid input voltages and currents. Negative sequential component of ac input current is injected to the point of common coupling in the proposed control strategy. The amplitude of negative sequential component is calculated to minimize the negative sequential component of grid voltage under the limitation of current capability in a voltage source converter. The proposed control algorithm makes it possible to provide a balanced voltage at the point of common coupling resulting in the generated power of high quality from offshore wind power system under unbalanced network conditions.

  • PDF

Loss Analysis and Comparison of High Power Semiconductor Devices in 5MW PMSG MV Wind Turbine Systems

  • Lee, Kihyun;Suh, Yongsug;Kang, Yongcheol
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1380-1391
    • /
    • 2015
  • This paper provides a loss analysis and comparison of high power semiconductor devices in 5MW Permanent Magnet Synchronous Generator (PMSG) Medium Voltage (MV) Wind Turbine Systems (WTSs). High power semiconductor devices of the press-pack type IGCT, module type IGBT, press-pack type IGBT, and press-pack type IEGT of both 4.5kV and 6.5kV are considered in this paper. Benchmarking is performed based on the back-to-back type 3-level Neutral Point Clamped Voltage Source Converters (3L-NPC VSCs) supplied from a grid voltage of 4160V. The feasible number of semiconductor devices in parallel is designed through a loss analysis considering both the conduction and switching losses under the operating conditions of 5MW PMSG wind turbines, particularly for application in offshore wind farms. This paper investigates the loss analysis and thermal performance of 5MW 3L-NPC wind power inverters under the operating conditions of various power factors. The loss analysis and thermal analysis are confirmed through PLECS Blockset simulations with Matlab Simulink. The comparison results show that the press-pack type IGCT has the highest efficiency including the snubber loss factor.

출력변동 저감 및 출력범위 예측 향상을 위한 풍력-연료전지 하이브리드 시스템의 운영방법 (Operation Scheme to Regulate the Active Power Output and to Improve the Forecasting of Output Range in Wind Turbine and Fuel-Cell Hybrid System)

  • 김윤성;문대성;원동준
    • 전기학회논문지
    • /
    • 제58권3호
    • /
    • pp.531-538
    • /
    • 2009
  • The paper deals with an operation scheme to improve the forecasting of output range and to regulate the active power output of the hybrid system consisting of a doubly fed induction generator (DFIG) and a fuel-cell. The power output of the wind turbine fluctuates as the wind speed varies and the slip power between the rotor circuit and power converter varies as the rotor speed change. The power fluctuation of a DFIG makes its operation difficult when a DFIG is connected to grid. A fuel cell system can be individually operated and adjusted output power, hence the wind turbine and fuel cell hybrid system can overcome power fluctuation by using a fuel-cell power control. In this paper, a fuel-cell is performed to regulate the active power output in comparison with the regulated active power output of a DFIG. And it also improves the forecasting of output range. Based on PSCAD/EMTDC tools, a DFIG and a proton exchange membrane fuel cell(PEMFC) is simulated and the dynamics of the output power in hybrid system are investigated.

On the Design of Power Supply System for Freight Train Reefer Container Based on Simulation

  • Kim, Joouk;Hwang, Sunwoo;Lee, Jae-Bum;Hwang, Jaemin;Chae, Uri
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제14권3호
    • /
    • pp.249-257
    • /
    • 2022
  • In recent years, if we order food by easily accessing the online market with our smartphone, we can receive the product in a fresh state at dawn the next day. Cold chain is an industry that can create high added value because it has both the characteristics of general logistics and sensitivity to temperature. Based on the electrical specifications derived from the reefer container capacity requirement investigation, we proved that power supply to up to 33 reefer containers can be made by using three additional auxiliary power supplies which are applied for freight trains in Korea. In this paper, we conducted a research on a design of power supply system for freight train reefer container based on simulation as a basic research necessary for low-temperature distribution and cold chain construction based on the reefer container railroad. Consequently, the simulation was conducted using the three-phase inverter diagram in PSIM and the SVPWM (3-harmonic injection method) control technique, and it was verified that the required power voltage was satisfied with 622Vdc, which is lower than the input voltage of general SPWM of 718Vdc. The details of this paper could be used as a foundational study for constructing cold chains based on a reefer container dedicated to freight trains in the future.

DSP기반 연료전지 하드웨어 시뮬레이터 구현 (Implementation of a DSP Based Fuel Cell Hardware Simulator)

  • 엄준현;임영철;정영국
    • 조명전기설비학회논문지
    • /
    • 제23권1호
    • /
    • pp.59-68
    • /
    • 2009
  • 분산진원으로서 연료전지 발전장치는 100w부터 수백[kw]의 용량을 가지며 종전의 대규모 전력설비와 비교하여 높은 신뢰도를 갖는 고품질의 전력을 공급할 수 있다. 본 연구에서는 소형 분산전원으로서 PEMFC(polymer electrolyte membrane fuel cell)연료전지 발전장치에 대한 PSIM(power electronics simulation tool) 모델을 설정하고 이를 바탕으로 DSP(digital signal processor)기반의 연료전지 하드웨어 시뮬레이터를 구현하였다. 연료전지 전류와 출력전압과의 관계는 연료전지의 전압-전류(V-I) 곡선 중 ohmic영역에서 1차 함수로 간략화 하였다. 구현된 시스템은 PEMFC 하드웨어 시뮬레이터, 절연형 풀 브리지 직류 부스트 컨버터 그리고 60[Hz] PWM인버터로 구성되어있다. 부하변동 및 과도상태에 대한 연료전지 하드웨어 시뮬레이터의 전압-전류-전력(V-I-P) 특성을 파악하였으며, 저항 부하 및 비선형 부하에 대한 전력변환기의 60[Hz] 정현파 교류출력 전압파형을 고찰하였다.

풍력발전기를 포함하는 전력계통에서의 신뢰도 기반 HVDC 확충계획 (Probabilistic Reliability Based HVDC Expansion Planning of Power System Including Wind Turbine Generators)

  • 오웅진;이연찬;최재석;윤용범;김찬기;임진택
    • 전기학회논문지
    • /
    • 제67권1호
    • /
    • pp.8-15
    • /
    • 2018
  • New methodology for probabilistic reliability based grid expansion planning of HVDC in power system including Wind Turbine Generators(WTG) is developed in this paper. This problem is focused on scenario based optimal selection technique to decide best connection bus of new transmission lines of HVDC in view point of adequacy reliability in power system including WTG. This requires two kinds of modeling and simulation for reliability evaluation. One is how is reliability evaluation model and simulation of WTG. Another is to develop a failure model of HVDC. First, reliability evaluation of power system including WTG needs multi-state simulation methodology because of intermittent characteristics of wind speed and nonlinear generation curve of WTG. Reliability methodology of power system including WTG has already been developed with considering multi-state simulation over the years in the world. The multi-state model already developed by authors is used for WTG reliability simulation in this study. Second, the power system including HVDC includes AC/DC converter and DC/AC inverter substation. The substation is composed of a lot of thyristor devices, in which devices have possibility of failure occurrence in potential. Failure model of AC/DC converter and DC/AC inverter substation in order to simulate HVDC reliability is newly proposed in this paper. Furthermore, this problem should be formulated in hierarchical level II(HLII) reliability evaluation because of best bus choice problem for connecting new HVDC and transmission lines consideration. HLII reliability simulation technique is not simple but difficult and complex. CmRel program, which is adequacy reliability evaluation program developed by authors, is extended and developed for this study. Using proposed method, new HVDC connected bus point is able to be decided at best reliability level successfully. Methodology proposed in this paper is applied to small sized model power system.