• Title/Summary/Keyword: Converter redundancy

Search Result 28, Processing Time 0.018 seconds

The Valve Redundancy Determination for HVDC Converter based on Modular Multilevel Converter (MMC기반의 전압형 HVDC 밸브의 여유율 결정)

  • Kim, Chan-Ki;Choi, Soon-Ho;Kang, Ji-Won;Yoon, Yong-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.4
    • /
    • pp.328-334
    • /
    • 2016
  • This paper examines the reliability of a VSC-HVDC valve based on a modular multilevel converter (MMC) HVDC system. The main objective of this paper is to determine the redundancy of the MMC valve. Several prediction methods are introduced, but the binomial failure method is selected to be used. To determine the availability and reliability prediction of MMC valve, which comprises a DC/DC converter, a gate driver, a capacitor, and an IGBT, the failure data of the MMC module are used as the tracking data according to the experimental result. This method uses a simplified equation to find the valve redundancy by transforming the binomial function to De Moivre's formula. This method is the first to be used to find the valve margin.

Switching Frequency Reduction Method for Modular Multi-level Converter Utilizing Redundancy Sub-module (예비 서브모듈을 활용한 모듈형 멀티레벨 컨버터의 스위칭 주파수 저감 기법)

  • Lee, Yoon-Seok;Yoo, Seung-Hwan;Choi, Jong-Yun;Park, Yong-Hee;Han, Byung-Moon;Yoon, Young-Doo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.12
    • /
    • pp.1640-1648
    • /
    • 2014
  • This paper proposes a switching frequency reduction method for MMC (Modular Multilevel Converter) utilizing redundancy operation of sub-module, which can offer reduction of voltage harmonics and switching loss. The feasibility of proposed method was verified through computer simulations with PSCAD/EMTDC software. Based on simulation analysis, a hardware scaled-model of 10kVA, DC-1000V MMC was designed and manufactured in the lab. Various experiments were conducted to verify the feasibility of proposed method in the actual hardware system. The hardware scaled-model can be effectively utilized for analyzing the performance of MMC according to the modulation scheme and redundancy operation.

A Study On The Load Sharing PWM Method For Multi-level Converter (멀티레벨 PWM 컨버터의 부하분담 PWM 방식 연구)

  • Ahn, Joonseon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.6
    • /
    • pp.529-534
    • /
    • 2017
  • In this paper, the implementation of proposed Automatic Load Balanced (ALB) PWM generation method is discussed. The conventional PWM generation method for cascade type H-bridge PWM converter causes the unbalance between each H-bridge converter, therefore the complex redundancy is required for the balancing of switching load of each converter, it consumes more computing power of controller. The ALB PWM method needs no additional switching redundancy for balancing, this paper discusses the implementation of ALB-PWM.

Switching-Level Operation Analysis of MMC-based Back-to-Back Converter for HVDC Application (HVDC 적용을 위한 MMC 기반 Back-to-Back 컨버터의 스위칭레벨 동작분석)

  • Hong, Jung-Won;Jeong, Jong-Kyou;Yoo, Seong-Hwan;Choi, Jong-Yun;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1240-1248
    • /
    • 2013
  • This paper describes a switching-level operation analysis of BTB(Back-To-Back) converter for HVDC(high voltage DC) application based on MMC(modular multi-level converter). A switching-level operation analysis for BTB converter is very important to understand the converter operation in detail and check the voltage and current transients in each components. However, the development of switching-level simulation model for the actual size BTB Converter is very difficult because the MMC normally has more than 150 sub-modules for each arm. So, a switching level simulation model for the 11-level MMC-based BTB converter was developed with PSCAD/EMTDC software, which has 12 sub-modules for the positive arm and another 12 sub-modules for the negative arm. The DC-voltage balance algorithm, the circulating-current reduction algorithm, the harmonic reduction algorithm, and the redundancy operation algorithm were included in this simulation model. The developed simulation model can be utilized to analyze the MMC-based BTB converter for HVDC application in switching level and to develop the protection scheme for the MMC-based BTB converter for HVDC application.

Switching Frequency Reduction Method for Modular Multi-level Converter utilizing Redundancy Sub-module (예비 서브모듈을 활용한 모듈형 멀티레벨 컨버터의 스위칭 주파수 저감 기법)

  • yoo, Seung-Hwan;Jeong, Jong-Kyou;Han, Byung-Moon
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.11-12
    • /
    • 2014
  • This paper introduces a scaled hardware model for the 10kVA, 1kV, 11-level MMC (Modular Multilevel Converter), which was manufactured in the lab based on computer simulations with PSCAD/EMTDC. Various experiments were conducted to verify the major operation algorithms of MMC. The hardware scaled-model developed in the lab can be utilized for analyzing the operation analysis and performance evaluation of MMC according to the modulation pattern and redundancy operation scheme.

  • PDF

A Fault-Tolerant Control Strategy for Cascaded H-Bridge Multilevel Rectifiers

  • Iman-Eini, Hossein;Farhangi, Shahrokh;Schanen, Jean-Luc;Khakbazan-Fard, Mahboubeh
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.34-42
    • /
    • 2010
  • Reliability is an important issue in cascaded H-bridge converters (CHB converters) because they use a high number of power semiconductors. A faulty power cell in a CHB converter can potentially lead to expensive downtime and great losses on the consumer side. With a fault-tolerant control strategy, operation can continue with the undamaged cells; thus increasing the reliability of the system. In this paper, the operating principles and the control method for a CHB multilevel rectifier are introduced. The influence of various faults on the CHB converter is investigated. The method of fault diagnosis and the bypassing of failed cells are explained. A fault-tolerant protection strategy is proposed to achieve redundancy in the CHB rectifier. The redundant H-bridge concept helps to deal with device failures and to increase system reliability. Simulation results verify the performance of the proposed strategy.

Redundancy Module Operation Analysis of MMC using Scaled Hardware Model (축소모형을 이용한 MMC의 Redundancy Module 동작분석)

  • Yoo, Seung-Hwan;Shin, Eun-Suk;Choi, Jong-Yun;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1046-1054
    • /
    • 2014
  • In this paper, a hardware prototype for the 10kVA 11-level MMC was built and various experimental works were conducted to verify the operation algorithms of MMC. The hardware prototype was designed using computer simulation with PSCAD/EMTDC software. After manufactured in the lab, the hardware prototype was tested to verify the modulation algorithms to form the output voltage, the balancing algorithm to equalize the sub-module capacitor voltage, and the redundancy operation algorithm to improve the system reliability. The developed hardware prototype can be utilized for analyzing the basic operation and performance improvement of MMC according to the modulation and redundancy operation scheme. It also can be utilize to analyze the basic operational characteristics of HVDC system based on MMC.

A Study On the Characteristics of Cascaded PWM Converter for IUT (IT기반 지능형 다기능 변압기용 cascade형 PWM 컨버터의 특성 연구)

  • Ahn, Joonseon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.3
    • /
    • pp.135-140
    • /
    • 2013
  • In this paper, novel PWM generation method for cascaded H-bridge PWM converter is proposed. The proposed method can solve the unvalancing problem between H-bridges which consist cascade PWM converter without any injection of redundancy switching pattern for solving the load of switches forced from voltage reference of controller.

The Operation characteristics of the parallel operation system using the model for parallel operation (병렬운전 모델을 이용한 병렬운전 시스템의 운전 특성)

  • 김성관;김수석;김왕곤
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.157-163
    • /
    • 2002
  • Consideration for parallel operation in a high power system has been increased due to the advantages of parallel operation like as high productivity, simplicity of design, and redundancy of power. This paper discussed the parallel operation of DC-DC Converter, Which Can be used as a high power system, is studied. Based on the small signal model of DC-DC Converter, the simple and exact power stage model of parallel operation system is derived and the parallel operation system using current balance method for the uniform current distribution among the parallel operation system is discussed. To verify the high performance of the proposed DC-DC converter system for parallel operation, the simulation test of the parallel operation, which has 2 Converter modules, is accomplished.

  • PDF

Switching-level operation Anlysis Model development of 11-level MMC HVDC System using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 11-level MMC HVDC 시스템의 스위칭레벨 동작분석 모델 개발)

  • Hong, Jung-Won;Jeong, Jong-Kyou;Yoo, Seung-Hwan;Han, Byung-Moon;Choi, Jong-Yun
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.540-541
    • /
    • 2013
  • 본 논문에서는 PSCAD/EMTDC를 이용하여 MMC(Modular Multi-level Converter)를 기반으로 한 HVDC 시스템 시뮬레이션 모델을 개발하였다. 스위칭 레벨의 동작을 분석하기 위해 각 ARM당 10개의 SM(Sub-Module)과 2개의 RM(Redundancy-Module)을 구성하여 11-level의 MMC 출력 전압을 형성하였다. SM 동작시 발생하는 전압 불균등 문제를 해결하기 위하여 밸런싱 알고리즘을 적용하였으며, SM의 출력 전압에 발생하는 Ripple을 고려하여 Capacitor의 용량을 설계하고 이를 검증하였다. 또한 시뮬레이션을 이용하여 HVDC 성능 분석과 MMC의 성능개선을 위한 순환전류 알고리즘 및 Redundancy 투입 알고리즘을 구현하고 그 결과를 확인하였다.

  • PDF