• Title/Summary/Keyword: Conversion Energy

Search Result 3,331, Processing Time 0.033 seconds

Optimization of soaking in aqueous ammonia pretreatment of canola residues for sugar production (당 생산을 위한 카놀라 부산물의 암모니아 침지 전처리 공정의 최적화)

  • Yoo, Hah-Young;Kim, Sung Bong;Lee, Sang Jun;Lee, Ja Hyun;Suh, Young Joon;Kim, Seung Wook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.114.1-114.1
    • /
    • 2011
  • Bioenergy production from lignocellulosic biomass and agriculture wastes have been attracted because of its sustainable and non-edible source. Especially, canola is considered as one of the best feedstock for renewable fuel production. Oil extracted canola and its agriculture residues are reuseable for bioethanol production. However, a pretreatment step is required before enzymatic hydrolysis to disrupt recalcitrant lignocellulosic matrix. To increase the sugar conversion, more efficient pretreatment process was necessary for removal of saccharification barriers such as lignin. Alkaline pretreatment makes the lignocellulose swollen through solvation and induces more porous structure for enzyme access. In our previous work, aqueous ammonia (1~20%) was utilized for alkaline reagent to increase the crystallinity of canola residues pretreatment. In this study, significant factors for efficient soaking in aqueous ammonia pretreatment on canola residues was optimized by using the response surface method (RSM). Based on the fundamental experiments, the real values of factors at the center (0) were determined as follows; $70^{\circ}C$ of temperature, 17.5% of ammonia concentration and 18 h of reaction time in the experiment design using central composition design (CCD). A statistical model predicted that the highest removal yield of lignin was 54% at the following optimized reaction conditions: $72.68^{\circ}C$ of temperature, 18.30% of ammonia concentration and 18.30 h of reaction time. Finally, maximum theoretical yields of soaking in aqueous ammonia pretreatment were 42.23% of glucose and 22.68% of xylose.

  • PDF

Optimization of Dilute Acid Pretreatment of Rapeseed straw for the Bioethanol Production (바이오에탄올 생산을 위한 농산부산물(유채짚)의 묽은 산 전처리 공정 최적화)

  • Jeong, Tae-Su;Won, Kyung-Yoen;Oh, Kyeong-Keun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.67-70
    • /
    • 2008
  • Biological conversion of biomass into fuels and chemicals requires hydrolysis of the polysaccharide fraction into monomeric sugars. Hydrolysis can be performed enzymatically, and with dilute or concentrate mineral acids. In this study, dilute sulfuric acid used as a catalyst for the hydrolysis of rapeseed straw. The purpose of this study is to optimize the hydrolysis process in a 15ml bomb tube reactor and investigate the effects of the acid concentration, temperature and reaction time on the hemicellulose removal and consequently on the production of sugars (xylose, glucose and arabinose) as well as on the formation of by-products (furfural, 5-hydroxymethylfurfural and acetic acid). Statistical analysis was based on a model composition corresponding to a $3^3$ orthogonal factorial design and employed the response surface methodology (RSM) to optimize the hydrolysis conditions, aiming to attain maximum xylose extraction from hemicellulose of rapeseed straw. The obtained optimum conditions were: acid concentration of 0.77%, temperature of $164^{\circ}C$ with a reaction time of 18min. Under these conditions, 75.94% of the total xylose was removed and the hydrolysate contained 0.65g $L^{-1}$ Glucose, 0.36g $L^{-1}$ Arabinose, 3.59g $L^{-1}$ Xylose, 0.51g $L^{-1}$ Furfural, 1.36g $L^{-1}$ Acetic acid, and 0.08g $L^{-1}$ 5-hydroxymethylfurfural.

  • PDF

Fabrication of Phased Array EMAT and Its Characteristics (위상배열 EMAT의 제작 및 특성 평가)

  • Ahn, Bong-Young;Cho, Seung-Hyun;Kim, Young-Joo;Kim, Ki-Bok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.373-379
    • /
    • 2010
  • EMAT has been applied in various fields for flaw detection and material characterization because it has noncontact property in wave generation and a good mode selectivity. Unfortunately, however, EMAT shows low signal to noise ratio relative to commercial contact transducer because of low energy conversion efficiency. If the phase matching through the control of time delay between each coil consisting of the array EMAT is accomplished, it is expected that it will be a solution for the improvement of low signal to noise ratio. In this experiment, the phased array EMATs which consists of 3 or 4 meander coils and one big magnet were fabricated for surface and vertical shear wave generation. Effect of phased delay control on signal directivity and amplitude enhancement was verified. A slit with the depth of 0.5 mm and a side-drill hole of 0.5 mm diameter were clearly detected by fabricated phased array EMATs, respectively.

Label-free Femtomolar Detection of Cancer Biomarker by Reduced Graphene Oxide Field-effect Transistor

  • Kim, Duck-Jin;Sohn, Il-Yung;Jung, Jin-Heak;Yoon, Ok-Ja;Lee, N.E.;Park, Joon-Shik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.549-549
    • /
    • 2012
  • Early detection of cancer biomarkers in the blood is of vital importance for reducing the mortality and morbidity in a number of cancers. From this point of view, immunosensors based on nanowire (NW) and carbon nanotube (CNT) field-effect transistors (FETs) that allow the ultra-sensitive, highly specific, and label-free electrical detection of biomarkers received much attention. Nevertheless 1D nano-FET biosensors showed high performance, several challenges remain to be resolved for the uncomplicated, reproducible, low-cost and high-throughput nanofabrication. Recently, two-dimensional (2D) graphene and reduced GO (RGO) nanosheets or films find widespread applications such as clean energy storage and conversion devices, optical detector, field-effect transistors, electromechanical resonators, and chemical & biological sensors. In particular, the graphene- and RGO-FETs devices are very promising for sensing applications because of advantages including large detection area, low noise level in solution, ease of fabrication, and the high sensitivity to ions and biomolecules comparable to 1D nano-FETs. Even though a limited number of biosensor applications including chemical vapor deposition (CVD) grown graphene film for DNA detection, single-layer graphene for protein detection and single-layer graphene or solution-processed RGO film for cell monitoring have been reported, development of facile fabrication methods and full understanding of sensing mechanism are still lacking. Furthermore, there have been no reports on demonstration of ultrasensitive electrical detection of a cancer biomarker using the graphene- or RGO-FET. Here we describe scalable and facile fabrication of reduced graphene oxide FET (RGO-FET) with the capability of label-free, ultrasensitive electrical detection of a cancer biomarker, prostate specific antigen/${\alpha}$ 1-antichymotrypsin (PSA-ACT) complex, in which the ultrathin RGO channel was formed by a uniform self-assembly of two-dimensional RGO nanosheets, and also we will discuss about the immunosensing mechanism.

  • PDF

Key Factors for the Development of Silicon Quantum Dot Solar Cell

  • Kim, Gyeong-Jung;Park, Jae-Hui;Hong, Seung-Hwi;Choe, Seok-Ho;Hwang, Hye-Hyeon;Jang, Jong-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.207-207
    • /
    • 2012
  • Si quantum dot (QD) imbedded in a $SiO_2$ matrix is a promising material for the next generation optoelectronic devices, such as solar cells and light emission diodes (LEDs). However, low conductivity of the Si quantum dot layer is a great hindrance for the performance of the Si QD-based optoelectronic devices. The effective doping of the Si QDs by semiconducting elements is one of the most important factors for the improvement of conductivity. High dielectric constant of the matrix material $SiO_2$ is an additional source of the low conductivity. Active doping of B was observed in nanometer silicon layers confined in $SiO_2$ layers by secondary ion mass spectrometry (SIMS) depth profiling analysis and confirmed by Hall effect measurements. The uniformly distributed boron atoms in the B-doped silicon layers of $[SiO_2(8nm)/B-doped\;Si(10nm)]_5$ films turned out to be segregated into the $Si/SiO_2$ interfaces and the Si bulk, forming a distinct bimodal distribution by annealing at high temperature. B atoms in the Si layers were found to preferentially substitute inactive three-fold Si atoms in the grain boundaries and then substitute the four-fold Si atoms to achieve electrically active doping. As a result, active doping of B is initiated at high doping concentrations above $1.1{\times}10^{20}atoms/cm^3$ and high active doping of $3{\times}10^{20}atoms/cm^3$ could be achieved. The active doping in ultra-thin Si layers were implemented to silicon quantum dots (QDs) to realize a Si QD solar cell. A high energy conversion efficiency of 13.4% was realized from a p-type Si QD solar cell with B concentration of $4{\times}1^{20}atoms/cm^3$. We will present the diffusion behaviors of the various dopants in silicon nanostructures and the performance of the Si quantum dot solar cell with the optimized structures.

  • PDF

Thermodynamic Control in Competitive Anchoring of N719 Sensitizer on Nanocrystalline $TiO_2$ for Improving Photoinduced Electrons

  • Lim, Jong-Chul;Kwon, Young-Soo;Song, In-Young;Park, Sung-Hae;Park, Tai-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.68-69
    • /
    • 2011
  • The process of charge transfer at the interface between two semiconductors or between a metal and a semiconductor plays an important role in many areas of technology. The optimization of such devices requires a good theoretical description of the interfaces involved. This, in turn, has motivated detailed mechanistic studies of interfacial charge-transfer reactions at metal/organic, organic/organic, and organic/inorganic semiconductor heterojunctions. Charge recombination of photo-induced electron with redox species such as oxidized dyes or triiodide or cationic HTM (hole transporting materials) at the heterogeneous interface of $TiO_2$ is one of main loss factors in liquid junction DSSCs or solid-state DSSCs, respectively. Among the attempts to prevent recombination reactions such as insulating thin layer and lithium ions-doped hole transport materials and introduction of co-adsorbents, although co-adsorbents retard the recombination reactions as hydrophobic energy barriers, little attention has been focused on the anchoring processes. Molecular engineering of heterogeneous interfaces by employing several co-adsorbents with different properties altered the surface properties of $TiO_2$ electrodes, resulting to the improved power conversion efficiency and long-term stability of the DSSCs. In this talk, advantages of the coadsorbent-assisted sensitization of N719 in preparation of DSSCs will be discussed.

  • PDF

Basic Study on the Regenerator of Stilting Engine (II) - Heat transfer and flow friction loss characteristics of the regenerator with wire screen matrix - (스털링기관용 재생기에 관한 기초연구 (II) - 철망을 축열재로 한 재생기의 전열 및 유동손실특성 -)

  • 김태한;이시민;이정택
    • Journal of Biosystems Engineering
    • /
    • v.27 no.6
    • /
    • pp.529-536
    • /
    • 2002
  • The performance of stilting engine, in particular, its energy conversion efficiencies are critically influenced by the regenerator characteristics. The regenerator characteristics are influenced by effectiveness, void fraction. heat transfer loss and fluid friction loss in the regenerator matrix. These factors were influenced by the surface geometry and material properties of the regenerator matrix. The regenerator design goals arc good heat transfer and low pressure drop of working Bas across the regenerator. Various data for designing a wire screen matrix have been given by Kays and London(1984). The mesh number of their experiment. however, was confined below the No. 60. which seems rather small for the Stirling engine applications. In this paper. in order to provide a basic data for the design of regenerator matrix, characteristics of heat transfer and flow friction loss were investigated by a packed mettled of matrix in oscillating flow as the same condition of operation in a Stirling engine. Seven kinds of sing1e wire screen meshes were used as the regenerator matrices. The results are summarized as follows; 1. While the working fluid flew slowly in the regenerator. the temperature difference was great at the both hot-blow(the working fluid flows from healer to cooler) and cold-blow(the working fluid flows from cooler to healer). On the other hand. while the working fluid flew fast. the temperature difference was not distinguished. 2. The No.150 wire screen used as the regenerator matrix showed excellent performance than tile others. 3. Phase angle variation and filling rate affected heat transfer or regenerator matrices. 4. Temperature difference between the inlet and outlet of the regenerator is very hish in degree of 120 phase angle.

Effects of Se/(S+Se) Ratio on Cu2ZnSn(SxSe1-x)4 (CZTSSe) Thin Film Solar Cells Fabricated by Sputtering

  • Park, Ju Young;Hong, Chang Woo;Moon, Jong Ha;Gwak, Ji Hye;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.75-79
    • /
    • 2015
  • Recently, $Cu_2ZnSn(S_xSe_{1-x})_4$ (CZTSSe) has been received a tremendous attraction as light absorber material in thin film solar cells (TFSCs), because of its earth abundance, inexpensive and non-toxic constituents and versatile material characteristics. Kesterite CZTSSe thin films were synthesized by sulfo-selenization of sputtered Cu/Sn/Zn stacked metallic precursors. The sulfo-selenization of Cu/Sn/Zn stacked metallic precursor thin films has been carried out in a graphite box using rapid thermal annealing (RTA) technique. Annealing process was done under sulfur and selenium vapor pressure using Ar gas at $520^{\circ}C$ for 10 min. The effect of tuning Se/(S+Se) precursor composition ratio on the properties of CZTSSe films has been investigated. The XRD, Raman, FE-SEM and XRF results indicate that the properties of sulfo-selenized CZTSSe thin films strongly depends on the Se/(S+Se) composition ratio. In particular, the CZTSSe TFSCs with Se/(S+Se) = 0.37 exhibits the best power conversion efficiency of 4.83% with $V_{oc}$ of 467 mV, $J_{sc}$ of $18.962mA/cm^2$ and FF of 54%. The systematic changes observed with increasing Se/(S+Se) ratio have been discussed in detail.

Determination of Main Factors Affecting the Electrodialysis of Succinate by Using Design of Experiment Method (실험계획법을 이용한 숙신산염 탈염의 주요 공정변수 결정)

  • Shin, Seunghan;Chang, Eugene;Lee, Do-Hoon;Kim, Sangyong
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.179-184
    • /
    • 2008
  • The separation and purification of succinate are necessary for the succinic acid production by a fermentation process. Among the purification processes, desalination of succinate is inevitable. In this work, electrodialysis was selected as a desalination method and its operating parameters affecting the degree of desalination and energy consumption were examined. Commercialized electrodialysis apparatus was used in this work and its optimum operating parameters were determined by using design of experiment (DOE) method. Voltage, concentration of succinate, and pH were selected as main parameters. Among them, voltage seemed to be the most important one. The final conversion of succinate to succinic acid was calculated when the operating parameters were optimized. Finally, the effect of impurities, such as corn steep oil, yeast extract, and dextrose on the electrodialysis efficiency was also studied.

Thermal Degradation of High Molecular Components Obtained from Pyrolysis of Mixed Waste Plastics (혼합폐플라스틱의 열분해로부터 생성된 고분자성분의 열적분해)

  • Oh, Sea Cheon;Ryu, Jae Hun;Kwak, Hyun;Bae, Seong-Youl;Lee, Kyong-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.191-198
    • /
    • 2008
  • The thermal degradation characteristics of high molecular components obtained from pyrolysis of mixed waste plastics have been studied by thermogravimetric analysis (TGA) and gas chromatography spectrometry (GC-MS). The kinetics of thermal degradation has been studied by a conventional nonisothermal thermogravimetric technique at several heating rates between 10 and $50^{\circ}C/min$. The dynamic thermogravimetric analysis curve and its derivative have been analyzed using a variety of analytical methods reported in the literature to obtain information on the kinetic parameters such as activation energies and reaction orders. The yields of liquid products have been monitored by batch pyrolysis reactor under various reaction temperatures and reaction times. And the characteristic of liquid products with the increase in reaction temperature has been performed by GC-MS.