• 제목/요약/키워드: Conversion Energy

검색결과 3,344건 처리시간 0.029초

파력발전용 새로운 공기터빈 개발에 관한 연구 (Study of a New Air Turbine for Wave Energy Conversion)

  • 김태호;뢰호구준명;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.955-960
    • /
    • 2001
  • In order to develop an efficient turbine for wave energy conversion suitable for actual ocean conditions, a new type of the air turbine with staggered blades has been investigated experimentally. Experiments have been carried out under steady flow conditions. Both the running and starting characteristics under sinusoidally oscillating flow conditions are simulated by a CFD method using a quasi-steady analysis. It is known that the air turbine with staggered blades gives a better performance compared with conventional Wells turbine, and a proper design factor of the air turbine is discussed for the setting angle of the rotor.

  • PDF

수치해법을 이용한 풍력 및 조류발전용 수평축 터빈의 성능해석 (Numerical analysis for horizontal axis wind and tidal stream energy conversion turbine)

  • 이주현;김동환;박세완;이희범;박선호;이신형
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.165.1-165.1
    • /
    • 2011
  • In the present study, two numerical methods were developed and compared for the performance prediction of the horizontal axis energy conversion turbine. The Blade Element Momentum Theory was adopted, and the rotating reference frame method for Computational Fluid Dynamics solver was also used. Hybrid meshing was used for the complex geometry of turbines. The analysis results using each method were compared to figure out a better method for the performance prediction.

  • PDF

Conversion-Alloying Anode Materials for Na-ion Batteries: Recent Progress, Challenges, and Perspective for the Future

  • Kim, Joo-Hyung;Kim, Do Kyung
    • 한국세라믹학회지
    • /
    • 제55권4호
    • /
    • pp.307-324
    • /
    • 2018
  • Rechargeable lithium-ion batteries (LIBs) have been rapidly expanding from IT based applications to uses in electric vehicles (EVs), smart grids, and energy storage systems (ESSs), all of which require low cost, high energy density and high power density. The increasing demand for LIBs has resulted in increasing price of the lithium source, which is a major obstacle to wider application. To date, the possible depletion of lithium resources has become relevant, giving rise to the interest in Na-ion batteries (NIBs) as promising alternatives to LIBs. A lot of transition metal compounds based on conversion-alloying reaction have been extensively investigated to meet the requirement for the anodes with high energy density and long life-time. In-depth understanding the electrochemical reaction mechanisms for the transition metal compounds makes it promising negative anode for NIBs and provides feasible strategy for low cost and large-scale energy storage system in the near future.

여자시스템 자동-수동 전환 문제점에 대한 분석 (The Analysis on AVR-MVR Conversion Trouble for Excitation System)

  • 옥연호;이은웅;변일환;이형묵;최홍열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.941-942
    • /
    • 2006
  • The Analysis on AVR-MVR conversion trouble for Excitation System AVR-MVR conversion is a very important function to transfer AVR to MVR when the grid has abrupt changes or the control system has some problems. Therefore through studying on AVR-MVR transfer scheme, and problems which might happen when transferring, we would like to enhance the stability of generator and control system.

  • PDF

A Twin Impulse Turbine for Wave Energy Conversion -The Performance under Unsteady Airflow-

  • Alam, M M Ashraful;Sato, Hideki;Takao, Manabu;Okuhara, Shinya;Setoguchi, Toshiaki
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권4호
    • /
    • pp.300-306
    • /
    • 2016
  • A twin unidirectional impulse turbine for wave energy conversion has been suggested in our previous study, and the performance under unsteady flow has been investigated by quasi-steady analysis. In the present study, the performance of twin impulse turbine under unsteady flow condition has been investigated by unsteady analysis of Computational fluid dynamics. As a result, the mean efficiency of twin unidirectional impulse turbine under unsteady flow is lower than the maximum efficiency of unidirectional impulse turbine. Moreover, it is verified that airflow goes backward in the reverse turbine in low flow rates.

Wells Turbine for Wave Energy Conversion -Effect of Trailing Edge Shape-

  • Takasaki, Katsuya;Tsunematsu, Tomohiro;Takao, Manabu;Alam, M M Ashraful;Setoguchi, Toshiaki
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권4호
    • /
    • pp.307-312
    • /
    • 2016
  • The present study reported of the use of special shaped blade to reduce the difference in pressure across the Wells turbine for wave energy conversion. The blade profile was composed of NACA0020 airfoils and trailing edge was notched like chevron. Experiments were performed investigating the influence of trailing edge shape on the turbine performance. Four notch depths were used to investigate the effect of depth of cut on the turbine performance. As results, by placing a notch-cut at the trailing edge of the blade, it was possible to reduce the pressure difference across the turbine without lowering the efficiency. In addition, the pressure difference substantially reduced at a constant rate with the increase of the cut ratio.

Numerical Analysis of Wave Field in OWC Chamber Using VOF Model

  • ;현범수
    • 한국해양공학회지
    • /
    • 제22권2호
    • /
    • pp.1-6
    • /
    • 2008
  • Recently Oscillating Water Column (OWC) plants have been widely employed in wave energy conversion applications. It is necessary to investigate the chamber and optimize its shape parameters for maximizing air flow and energy conversion due to wave conditions. A 2D numerical wave tank based on a Fluent and VOF model is developed to generate the incident waves and is validated by theoretical solutions. The oscillating water column motion in the chamber predicted by the numerical method is compared with the available experimental data. Several geometric scales of the chamber are calculated to investigate the effect of the shape parameters on the oscillating water column motion and wave energy conversion.

중성자(中性子) 및 감마선(線)에 대한 선량율(線量率) 환산인자(換算因子) 계산(計算) (Calculation of Neutron and Gamma-Ray Flux-to-Dose-Rate Conversion Factors)

  • 권석근;이수용;육종철
    • Journal of Radiation Protection and Research
    • /
    • 제6권1호
    • /
    • pp.8-24
    • /
    • 1981
  • This paper presents flux-to-dose-rate conversion factors for neutrons and gamma rays based on the American National Standard Institute(ANSI) N666. These data are used to calculated the dose rate distribution of neutron and gamma ray in radiation fields. Neutron flux-to-dose-rate conversion factors for energies from $2.5{\times}10^{-8}$ to 20 MeV are presented; the corresponding energy range for gamma rays is 0.01 to 15 MeV. Flux-to-dose-rate conversion factors were calculated, under the assumption that radiation energy distribution has nonlinearity in the phantom, have different meaning from those values obtained by monoetiergetic radiation. Especially, these values were determined with the cross section library. The flux-to-dose-rate conversion factors obtained in this work were in a good agreement to the values presented by ANSI. Those data will be a useful for the radiation shielding analysis and the radiation dosimetry in the case of continuous energy distributions.

  • PDF