• Title/Summary/Keyword: Converging Angle

Search Result 31, Processing Time 0.026 seconds

Flow Characteristics in the Converging Mini-Channels (좁아지는 유로에서의 유동 특성)

  • Karng, Sarng-Woo;Kim, Jin-Ho;Lee, Yoon-Pyo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1623-1628
    • /
    • 2004
  • Recently mini-channels or micro-channels are widely used for cooling the high density power electronic devices. Especially, the channels are used in small and high efficient equipments such as heat pipes and heat exchangers. Interfacial velocities between liquid and gas phases are very important in mini or micro-channels. In this paper, an experiment and a numerical analysis on the interfacial velocities were performed. In the experiment, the interfacial velocities which were measured by the high-speed CCD camera were about $26{\sim}33$ cm/s and the velocities increased as the inclination angle did. In the numerical experiment, CFD-ACE+, a commercial program, was used, the velocities had similar values with experimental results. As the inclination angle and the contact angle increased, the interfacial velocities did because of the surface tension which causes to move the interface. The effect of inclination angle was larger in the converging channels than in straight channels.

  • PDF

Analysis of Precision According to Converging Angle in Close-Range Digital Photogrammetry (근접수치사진측량의 수렴각변화에 따른 정밀도 해석)

  • Seo, Dong-Ju;Kim, Jin-Su
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.4
    • /
    • pp.123-133
    • /
    • 2005
  • This study has made photographing respectively by changing the converging angle by use of d7 $metric^5$ that is a measurement digital camera. And also in order to minimize the errors happened at the relative orientation, we have sorted out the round target that the relative orientation is automatically on the programming and have calculated RMSE by carrying out the bundle adjustment. We think that such a study could be used as very important basic data necessary in deriving the optimal photographic conditions by the close-range digital photogrammetry and in judging such a degree.

  • PDF

CFD analysis on the performance of steam ejector in multi effect desalination process

  • Utomo, Tony;Ji, Myeong-Kok;Choi, Du-Youl;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.623-628
    • /
    • 2007
  • The purpose of this paper is to study the influence of geometry parameter on the ejector performance. The CFD results were verified with available experimental data. Flow field analysis was also carried out in this study. Variation on the geometry parameter was made by varying the angle of converging duct those are $0.5^{\circ}$, $2.0^{\circ}$ and $3.5^{\circ}$. The converging duct with an angle of $0.5^{\circ}$ gives the highest value of entrainment ratio that is 0.941. Furthermore, from this study it can be concluded that the entrainment ratio decreases with respect to the increase of angle of convergence duct.

  • PDF

Numerical analysis of matural convection in inclined rectagular cavity using F.E.M. (유한요소법을 이용한 경사진 직사각형 단면 공동내부의 자연대류현상의 수치해석)

  • ;;Lee, Dong Ho
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.4
    • /
    • pp.329-337
    • /
    • 1981
  • Natural convection within inclined high aspect-ratio rectangular cavity was analysed by using finite element method. For a cavity of sapect-ratio 20, the flow patterns of secondary vortices and the heat transfer characteristics on the wall were obtained with the variation of tilt angle as well as Ra and Pr. The observation on the governing equations shows that the increase of Ra/Pr and the existence of nonzero tilt angle make the flow pattern more complicated and so it becomes difficult to obtain converging solution. The max. value of Ra/Pr attained in this study was 3x10$\^$4/at 0$\^$0/ tilt angle and 1.1x10$\^$4/ at 45.deg. tilt angle for aspect ratio 20and Pr=0.7. Finally an empirical formula for Nusselt number which can accout for the effect of tilt angle is obtained for laminar flow regime.

Effect of Outer Nozzle Ejection Angle on Jet Structure issuing from Supersonic Dual Coaxial Nozzle (초음속 동축 제트의 구조에 미치는 외부노즐 분사각의 영향)

  • Baek, Seung-Cheol;Kwon, Soo-Young;Joo, Seong-Yeol;Kwon, Soon-Bum
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.426-431
    • /
    • 2001
  • This paper experimentally investigates the characteristics of dual coaxial jet issuing from inner supersonic nozzle and four kinds of outer converging nozzle of 40, 50, $60^{\circ}$ and $70^{\circ}$ in outer ejection angle. The pressure ratio of the stagnation to the exit ambient pressures in the inner supersonic nozzle of constant expansion rate is 7.5, which is corresponded to the condition of a slightly underexpanded, and that of outer nozzle is 4.0. Flow visualizations by using of shadowgraph method, impact pressure and centerline static pressure measurements are presented. It is found that the jet structure is changed significantly by the variation of outer nozzle ejection angle. Impact pressure level is lower and undulation of static pressure is higher, as the injection angle of outer jet increases.

  • PDF

Effect of Outer Stagnation Pressure on Jet Structure in Supersonic Coaxial Jet (초음속 동축제트의 구조에 대한 외부 정체압력의 영향)

  • Kim, Myoung-Jong;Woo, Sang-Woo;Lee, Byeong-Eun;Kwon, Soon-Bum
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.664-669
    • /
    • 2001
  • The characteristics of dual coaxial jet which composed of inner supersonic nozzle of 26500 in constant expansion rate with 1.91 design Mach number and outer converging one with $40^{\circ}$ converging angle with the variation of outer nozzle stagnation pressures are experimentally investigated in this paper. In which the stagnation pressure for the inner supersonic nozzle is 750kPa thus, the inner jet leaving the nozzle is slightly underexpanded. The plenum pressures of outer nozzle are varied from 200 to 600kPa. Flow visualizations by shadowgraph method, impact pressure and centerline static pressure measurements of dual coaxial jet are presented. The results show that the presence of outer jet affects significantly the structures and pressure distributions of inner jet. And outer jet causes Mach disk which does not appear for the case of single jet stream. As the stagnation pressure of outer jet increases, impact pressure undulation is severe, but the average impact pressure keeps high far downstream.

  • PDF

Pre-swirl Nozzle Geometry Optimization to Increase Discharge Coefficient Using CFD Analysis (Pre-swirl system의 유량계수 향상을 위한 Pre-swirl nozzle의 형상 최적화 전산해석 연구)

  • Lee, Hyungyu;Lee, Jungsoo;Kim, Donghwa;Cho, Jinsoo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.21-28
    • /
    • 2017
  • Optimization process of pre-swirl nozzle geometry was conducted to improve the discharge coefficient of pre-swirl system by using CFD. The optimization of pre-swirl nozzle shape covered the converging angle and the location of the converging nozzle. Optimization process included Optimal Latin Hyper-cube Design method to get the experimental points and the Kriging method to create the response surface which gives candidate points. The process was finished when the difference between the predicted value and CFD value of candidate point was less than 0.1 %. This paper compared the Reference model, Initial model which is the first model of optimization and Optimized model to study flow characteristics. Finally, the discharge coefficient of Optimized model is improved about 17 % to the Reference model.

Numerical Study of Secondary Coating Die Geometry Effects on High Speed Optical Glass Fiber Coating Process (광섬유 2차 코팅다이 형상 변화에 따른 유리섬유 고속 코팅공정 영향성 해석연구)

  • Kim, Kyoungjin;Park, Joong-Youn
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.12-18
    • /
    • 2019
  • The protective double layer polymer coatings on silica optical fibers are realized by wet-on-wet liquid coating process and they play an important role in final quality of mass produced optical fibers. This numerical study aims to analyze the effects of secondary coating die design parameters by employing two dimensional axisymmetric model of coating cup and coating die geometry and computational fluid dynamics simulations which include temperature dependent viscosity of polymer coating liquids and viscous dissipation heating. Under high speed fiber drawing conditions and pressurized coating liquid supply, the effects of converging die angle are investigated in order to appreciate the change of coating liquid flow patterns such as flow recirculation zone near coating die as well as primary and secondary coating layer thicknesses. The auxiliary coating die to converging coating die is also tested and the results find that this concept is advantageous in achieving stable double layer coatings on silica glass fiber.

High Sensitivity and Selectivity of Array Gas Sensor through Glancing Angle Deposition Method

  • Kim, Gwang Su;Song, Young Geun;Kang, Chong yun
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.407-411
    • /
    • 2020
  • In this study, we propose an array-type gas sensor with high selectivity and response using multiple oxide semiconductors. The sensor array was composed of SnO2 and In2O3, and the detection characteristics were improved by using Pt, Au, and Pd catalysts. All samples were deposited directly on the Pt interdigitated electrode (IDE) through the e-beam evaporator glancing angle deposition (GAD) method. They grew in the form of well-aligned nanorods at off-axis angles. The prepared SnO2 and In2O3 nanorod samples were exposed to CH3COCH3, C7H8, and NO2 gases in a 300℃ dry condition. Au-decorated SnO2, Au-decorated In2O3, and Pd-decorated In2O3 exhibited high selectivity for CH3COCH3, C7H8, and NO2, respectively. They demonstrated a high detection limit of the sub ppb level computationally. In addition, measurements from each sensor were executed in the 40% relative humidity condition. Although there was a slight reduction in detection response, high selectivity and distinguishable detection characteristics were confirmed.

Composite Guidance Law for Impact Angle Control of Passive Homing Missiles (수동 호밍 유도탄의 충돌각 제어를 위한 복합 유도법칙)

  • Park, Bong-Gyun;Kim, Tae-Hun;Tahk, Min-Jea;Kim, Youn-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.20-28
    • /
    • 2014
  • In this paper, based on the characteristics of proportional navigation, a composite guidance law is proposed for impact angle control of passive homing missiles maintaining the lock-on condition of the seeker. The proposed law is composed of two guidance commands: the first command is to keep the look angle constant after converging to the specific look angle of the seeker, and the second is to impact the target with terminal angle constraint and is implemented after satisfying the specific line of sight(LOS) angle. Because the proposed law considers the seeker's filed-of-view(FOV) and acceleration limits simultaneously and requires neither time-to-go estimation nor relative range information, it can be easily applied to passive homing missiles. The performance and characteristics of the proposed law are investigated through nonlinear simulations with various engagement conditions.