• Title/Summary/Keyword: Convergence Angle

Search Result 627, Processing Time 0.02 seconds

Wavelet based Image Reconstruction specific to Noisy X-ray Projections (잡음이 있는 X선 프로젝션에 적합한 웨이블렛 기반 영상재구성)

  • Lee, Nam-Yong;Moon, Jong-Ik
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.4
    • /
    • pp.169-177
    • /
    • 2006
  • In this paper, we present an efficient image reconstruction method which is suited to remove various noise generated from measurement using X-ray attenuation. To be specific, we present a wavelet method to efficiently remove ring artifacts, which are caused by inevitable mechanical error in X-ray emitters and detectors. and streak artifacts, which are caused by general observation errors and Fourier transform-based reconstruction process. To remove ring artifacts related noise from projections, we suggest to estimate the noise intensity by using the fact that the noise related to ring artifacts has a strong correlation in the angle direction, and remove them by using wavelet shrinkage. We also suggest to use wavelet-vaguelette decomposition for general-purpose noise removal and image reconstruction. Through simulation studies. we show that the proposed method provides a better result in ring artifact removal and image reconstruction over the traditional Fourier transform-based methods.

  • PDF

A RCS investigation of Multiple Chaff clouds using Probability Distribution Characteristics (확률분포를 이용한 다중 채프의 RCS 특성 분석)

  • Chae, Gyoo-Soo;Lim, Joong-Soo;Kim, Young-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.2
    • /
    • pp.37-42
    • /
    • 2017
  • In order to estimate chaff RCS, we suggest here a novel method using the probability distribution. Normally, a chaff is assumed that it is a thin dipole antenna and the RCS can be calculated by the scattering wave theory. Most of the theoretical methods presented were mainly focusing on a single chaff cloud. In this paper, the RCS calculation was done for two or more chaff clouds and the changes of RCS with azimuth angle were observed. Matlab was used for presenting the probability distribution of chaff clouds and RCS calculation. A more accurate RCS estimation method is suggested by estimating the number of chaffs except the blocked elements.

Performance of cross-eye jamming due to amplitude mismatch: Comparison of performance analysis of angle tracking error (진폭비 불일치에 의한 cross-eye 재밍 성능: 각도 추적 오차 성능 분석 비교)

  • Kim, Je-An;Kim, Jin-Sung;Lee, Joon-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.51-56
    • /
    • 2021
  • In this paper, performance degradation in the cross-eye jamming due to amplitude mismatch of two jamming antennas is considered. The mismatch of the amplitude ratio is modeled as a random variable with a normal distribution of the difference between the actual amplitude ratio and the nominal amplitude ratio due to mechanical defects. In the proposed analytic performance analysis, the first-order Taylor series expansion and the second-order Taylor series expansion is adopted. Performance measure of the cross-eye jamming is the mean square difference (MSD). The analytically derived MSD is validated by comparing the analytically derived MSD with the first-order Taylor series-based simulation-based MSD and the second-order Taylor series-based simulation-based MSD. It shows that the analysis-based MSD is superior to the Monte-Carlo-based MSD, which has a high calculation cost.

Analysis of the monopulse radar tracking errors according to the JSR of cross-eye jammer and radar reflection signals (크로스아이 재머와 레이다 반사 신호 비(JSR)에 따른 모노펄스 레이다 추적 오차 분석)

  • Lim, Joong-Soo;Chae, Gyoo-Soo
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.8
    • /
    • pp.23-28
    • /
    • 2021
  • In this paper, we analyze the tracking errors of monopulse radar according to the JSR of retrodirective cross-eye and radar skin return signals. The cross-eye jammer gain(Gc) is used to calculate the radar tracking errors, and the relationship between the jammer gain and the JSR is represented mathematically. We analyze the radar tracking errors by varying the tracking angle and JSR. Analysis results of the phase difference(ϕ) and amplitude ratio(a) between the two jammer signals and the changing JSR show that the closer the phase difference of the two jammer signals is to 180, the greater the tracking error and it shows that if the JSR is above 20dB, the tracking errors no longer increase. This work presents an effective utilization of retrodirective cross-eye jammers through various tracking error analyses based on the JSR, tracking angles, two-jammer phase differences and amplitude ratios of two-jammer signals.

Improvement of UAV Attitude Information Estimation Performance Using Image Processing and Kalman Filter (영상처리와 칼만필터를 이용한 UAV의 자세 정보 추정 성능 향상)

  • Ha, Seok-Wun;Paul, Quiroz;Moon, Yong-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.6
    • /
    • pp.135-142
    • /
    • 2018
  • In recent years, researches utilizing UAV for military purposes such as precision tracking and batting have been actively conducted. In order to track the preceding flight, there has been a previous research on estimating the attitude information of the flight such as roll, pitch, and yaw using images taken from the rear UAV. In this study, we propose a method to estimate the attitude information more precisely by applying the Kalman filter to the existing image processing technique. By applying the Kalman filter to the estimated attitude data using image processing, we could reduce the estimation error of the attitude angle significantly. Through the simulation experiments, it was confirmed that the estimation using the Kalman filter can estimate the posture information of the aircraft more accurately.

A Study on the Acoustic Analysis Method of the External Ear Canal Using DICOM Images (DICOM 영상을 이용한 외이도 음향해석 방법에 관한 연구)

  • Kim, Hyeong-Gyun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.3
    • /
    • pp.73-79
    • /
    • 2019
  • This study simulated external ear canal modeling with different external ear canal lengths, vertical flexion angles, and inner/outer diameter ratios using digital imaging and communications in medicine(DICOM) of the head temporal region and measured the acoustic sensitivity. The experiment was performed by increasing the audible frequency for humans by 200 Hz and expressing the frequency constantly transmitted at 1 Pa as the eardrum acoustic volume and presented the measurements by linear and quadratic curve regression analysis. The results showed that the longer the external ear canal length and the higher the ratio of the outer/inner diameter, the faster the acoustic response at lower frequencies. The acoustic sensitivity correlation of the meta-model using regression analysis showed a 77% influence by the external ear canal length and 5% by the external/internal diameter ratio, while the vertical flexion angle did not show a significant relationship. This showed that auditory acoustic sensitivity of humans is a factor that reacts faster at a low frequency when the external ear canal length is longer and when the difference between the outer and inner diameter is higher.

Development of Squat Posture Guidance System Using Kinect and Wii Balance Board

  • Oh, SeungJun;Kim, Dong Keun
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.1
    • /
    • pp.74-83
    • /
    • 2019
  • This study designs a squat posture recognition system that can provide correct squat posture guidelines. This system comprises two modules: a Kinect camera for monitoring users' body movements and a Wii Balance Board(WBB) for measuring balanced postures with legs. Squat posture recognition involves two states: "Stand" and "Squat." Further, each state is divided into two postures: correct and incorrect. The incorrect postures of the Stand and Squat states were classified into three and two different types of postures, respectively. The factors that determine whether a posture is incorrect or correct include the difference between shoulder width and ankle width, knee angle, and coordinate of center of pressure(CoP). An expert and 10 participants participated in experiments, and the three factors used to determine the posture were measured using both Kinect and WBB. The acquired data from each device show that the expert's posture is more stable than that of the subjects. This data was classified using a support vector machine (SVM) and $na{\ddot{i}}ve$ Bayes classifier. The classification results showed that the accuracy achieved using the SVM and $na{\ddot{i}}ve$ Bayes classifier was 95.61% and 81.82%, respectively. Therefore, the developed system that used Kinect and WBB could classify correct and incorrect postures with high accuracy. Unlike in other studies, we obtained the spatial coordinates using Kinect and measured the length of the body. The balance of the body was measured using CoP coordinates obtained from the WBB, and meaningful results were obtained from the measured values. Finally, the developed system can help people analyze the squat posture easily and conveniently anywhere and can help present correct squat posture guidelines. By using this system, users can easily analyze the squat posture in daily life and suggest safe and accurate postures.

Design of Water Surface Hovering Drone for Underwater Stereo Photography (수중 입체촬영을 위한 수면호버링 드론 설계)

  • Kim, Hyeong-Gyun;Kim, Yong-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.6
    • /
    • pp.7-12
    • /
    • 2019
  • In order to shoot underwater, the photographer must be equipped with shooting equipment and enter into the water. Since the photographer directly enters the water, safety accidents occur frequently due to various obstacles or deep water in the water. The proposed underwater stereo photography technique can solve the safety accident problem caused by the entry of the photographer into the water by using the drone for underwater photographing. In addition, this technique has the advantage of obtaining underwater images at low cost. In this study, the angle of the proposed cam for stereoscopic photography was analyzed and the condition that the proper stereoscopic image can be viewed was defined as the distance from the floor of 18cm to the floor distance of 41.4cm. This provision is proposed to be used to adjust the height of the shooting area descended by the elevation chain of the water surface hovering drones.

Underwater Guidance System for AUV using Optical Sensor Array (광센서 배열을 이용한 무인잠수정의 종단유도장치 시스템)

  • Son, Hyeon-joong;Choi, Hyeung-sik;Kang, Jin-il;Sur, Joo-no;Jeong, Seong-hoon;Kim, Joon-young
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.125-133
    • /
    • 2019
  • In this paper, a new study was performed on the docking of AUV to docking station using light and light sensor system under the water. For this, a guiding system for AUV loading sensor system composed of lense, light sensor, signal processor, and processor and docking system with LED are proposed. An analysis on light sensor system and light-collecting lense to obtain accurate relative angle and measurement accuracy was performed. To prove this, the system was built and a basic experiment was performed. Finally, the feasibility of the developed docking system was verified the test in the water tank.

Effects of Cosmetics containing Pycnogenol on the skin of Korean Women in their 40s and 50s - Skin Clinical Approach (피크노제놀을 함유한 화장품이 40~50대 한국 여성의 피부에 미치는 영향 - 피부임상학적 접근)

  • Kim, Kyung-Yun;Ku, Jung-Eun
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.8
    • /
    • pp.309-315
    • /
    • 2021
  • Pycnogenol extracted from pine bark is a component with great antibacterial activity and antioxidant effect. It is applied as a natural anti-inflammatory agent with various medical effects including anti-inflammatory effects, regulation of blood pressure, regulation of the immune system, and inhibition of cancer cell growth. However, research related to cosmetics is limited. Therefore, in this study, the effect of Pycnogenol on the skin was studied through a clinical approach. Changes in skin condition were observed after using cosmetics with Pycnogenol and without Pycnogenol for 6 weeks for 10 clinicians in each group. We observed the effect of pore reduction, wrinkle reduction around eyes, a decrease of the number and angle of loose pores, and reduction of pigmentation. Therefore, cosmetics containing Pycnogenol have the effect of improving skin problems of aging skin.