• Title/Summary/Keyword: Conventional cultivation

Search Result 391, Processing Time 0.021 seconds

Experiment for Various Soils on Economic Duty of Water in Paddy Fields (각종토성별 경제적용수량 결정시험연구)

  • Hwang, Eun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.1
    • /
    • pp.1561-1579
    • /
    • 1969
  • In Korea, the duty of water in paddy fields was measured at the Agricultural Experimental Station in Suwon about 60 years ago. After that time some testing has been made in several places, but the key points in its experiment were the water depth of evapo-transpiration. Improved breeds, progress in cultivation and management techniques as well as development of measuring apparatus in recent years have necessitated the review of the duty of water in paddy fields. The necessity of reviewing the conventional methods has become even more important, as no source of information has been made available through survey of water utilization on a soil use basis which requires data on peculiar features of the water depth of evapo-transpiration. For example, the duty of water in paddy field is largely affected by the water depth of evapo-transpiration in connection with the wetted paddy field, whereas in connection with the normal paddy fields without this characteristic the vertical percolation become the predominant factor in measuring the decreasing depth of water. Therefore, it becomes important. that not only the water depth of evapotranspiration but also the vertical percolation process should also be observed in order to arrive at a realistic conclusion. As the vertical percolation has aclose relationship to the height of the underground water, the change of the latter can be measured. As the conclusion of this experiment, the following subjects are indicated. 1. In order to determine the economic duty of water in paddy fields on a basis of varying soil features, the varying soil features in the benifited area should be investigated thoroughly. The water depths of evapo-transpiration(ET) ratio to evaporation in the evaporator(V) on a basis of the varying soil features are as follows: clay loam ET/V = 1.11, loam ET/V = 1.64, sandy loam ET.V = 1.63 2. The decreasing depth of water consists of the water depth of evapotranspiration, the vertical per colation and the percolation of foot path. Among these three, the percolation of foot path can be utilized again. 3. As the result of this experiment, it shows the decreasing depth of water as follows. clay loam 9.3 mm/day, loam 13.5mm/daty, sandy loam 15.3mm/day 4. On a basis of the varying soil features and the height of the underground water, the vertical percolation varies. 5. The change of the vertical percolation on a basis of the varying soil features shows as follows: clay loam $1{\sim}2$ mm/day, loam $2{\sim}3$mm/day, sandy loam $3{\sim}4$mm/day 6. The level of the underground water changes sensibly by priority of clay loam, loam, sandy loam. When it rains, the level of the underground water rises fast and falls down slowly. 7. The level of the underground water changes within the scope of 25cm 8. The transpiration ratio is given in table 8 and their value are as follows: clay loam 168.8, loam 255.6, sandy loam 272.5

  • PDF