• Title/Summary/Keyword: Conventional combustion

Search Result 449, Processing Time 0.026 seconds

Performance Comparison of Molten Carbonate Fuel Cell Hybrid Systems Minimizing Carbon Dioxide Emissions (이산화탄소 배출을 최소화하는 용융탄산염 연료전지 하이브리드 시스템들의 성능 비교)

  • AHN, JI HO;YOON, SUK YOUNG;KIM, TONG SEOP
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.30-39
    • /
    • 2017
  • Interests in fuel cell based power generation systems are on the steady rise owing to various advantages such as high efficiency, ultra low emission, and potential to achieve a very high efficiency by a synergistic combination with conventional heat engines. In this study, the performance of a hybrid system which combined a molten carbonate fuel cell (MCFC) and an indirectly fired micro gas turbine adopting carbon dioxide capture technologies was predicted. Commercialized 2.5 MW class MCFC system was used as the based system so that the result of this study could reflect practicality. Three types of ambient pressure hybrid systems were devised: one adopting post-combustion capture and two adopting oxy-combustion capture. One of the oxy-combustion based system is configured as a semi-closed type, while the other is an open cycle type. The post-combustion based system exhibited higher net power output and efficiency than the oxy-combustion based systems. However, the semi-closed system using oxy-combustion has the advantage of capturing almost all carbon dioxide.

Development of Misfire Detection Using Spark-plug (스파크플러그를 이용한 실화감지에 관한 연구)

  • 채재우;이상만;정영식;최동천
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.27-37
    • /
    • 1997
  • Internal combustion engine is the main source of environmental pollutants and therefore better technology is required to reduce harmful elements from the exhaust gases all over the world. Especially, harmful elements from the exhaust gases are caused by incomplete combustion of mixture inside the engine cylinder and this abnormal combustion like misfire or partial burning is the direct cause of the air pollution and engine performance degradation. the object of this research is to detect abnormal combustion like misfire and to keep the engine performance in the optimal operating state. Development of a new system therefore could be applied to a real car. To realize this, the spark-plug in a conventional ignition system is used as a misfire detection sensor and breakdown voltage is analyzed. In this research, bias voltage(about 3kV) was applied to the electrodes of spark-plug and breakdown voltage signal is obtained. This breakdown voltage signal is analyzed and found that a combustion phenomena in engine cylinder has close relationship with harmonic coefficient K which was introduced in this research. Newly developed combustion diagnostic method( breakdown voltage signal analysis) from this research can be used for the combustion diagnostic and combustion control system in an real car.

  • PDF

A Study on NOx Emission Characteristics of An Industrial Gas Turbine (산업용 가스터빈의 NOx 배출 특성에 관한 연구)

  • Jeong, Jai-Mo;Park, Jung-Kyu
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.1
    • /
    • pp.11-17
    • /
    • 2004
  • The purposes of this study are to analyze nitrogen oxides(NOx) formation mechanism and to reduce abnormal NOx emissions in gas turbines. Industrial gas turbines emissions have potential to negative affect to the atmosphere in many different ways such as photochemical smog, acid rain and global warming. In conventional gas turbine combustors, one of the main pollutants such as nitrogen oxide(NOx) species, are principally formed from combustion process of fuel with oxygen in the primary combustion zone, and their emission levels are highly depend on peak temperatures in the combustor. In order to examine the characteristics and the effect of NOx formation, we used gas turbine of which commercial operating in Korea. From the examination, it has been found that NOx emissions are relatively high at low load(output) and during combustion mode change. Also, the effect of Air/Fuel ratio was considered. As the Air/Fuel ratio was increased in Lean-Lean mode, the NOx emission was decreased. The results of this study indicated that NOx emission levels are highly depend on peak temperature and pressure of combustion process in the combustor.

  • PDF

Development of a New Concept Rotary Engine (II) - Performance Analysis of Real Cycle - (신개념 로터리 엔진의 개발(II) - 실제 사이클의 성능 분석 -)

  • 오문근;박원엽;이승규
    • Journal of Biosystems Engineering
    • /
    • v.28 no.4
    • /
    • pp.285-294
    • /
    • 2003
  • This study was carried out to propose a new-concept internal combustion engine which has great potential advantages to the conventional engines. Proposed new-concept engine is a kind of rotary engine. A rotor is rotating concentrically in a cylinder which is divided into two partitioning valves, and it makes four compartments in the cylinder. The volumes of each of four compartments are changing continuously with the rotor movement and performs the functions of intake, compression. expansion and exhaust simultaneously. Expected thermal efficiency for the real cycle is 26 percent at conditions of 1,000 rpm and compression ratio of 8.0, which is 3 to 4 percent higher than that of the conventional engines such as the piston engine, gas turbine and Wankel rotary engine. A simulation procedure proved that the new concept engine is functional, and has many potential advantages compared to the existing conventional engines.

Ammonia Dual Fuel Approaches with Gasoline and Diesel in the Internal Combustion Engines (가솔린 및 디젤 엔진에서의 암모니아 이중연료 적용 연구)

  • Wooe, Y.;Jang, J.Y.;Lee, Y.J.;Kim, J.N.
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.273-275
    • /
    • 2014
  • An ammonia fuel system is developed and applied to both a spark ignition engine and a compression ignition engine to use ammonia as primary fuel in this study. Ammonia is injected separately into the intake manifold in liquid phase while gasoline or diesel is also injected as secondary fuel. As ammonia burns 1/6 time slower than gasoline or diesel, the spark or diesel injection timing is needed to be advanced to have better combustion phasing. The test engine showed quite high variation in the power output with large amount of ammonia. The final goal of the study is to implement a methodology to ignite ammonia-air mixture and have complete combustion without any use of the conventional fuels.

  • PDF

Effect of Secondary Air Injection on Emission from Sludge Incineration in a Batch-type Internally Cycloned Circulating Fluidized Bed Combustor (배치형 내부 사이클론식 순환유동층 연소로내 2차 공기 주입에 의한 슬러지 소각 유해 배가스 저감효과)

  • Jang, Seuk-Don;Shin, Dong-Hoon;Hwang, Jung-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.3
    • /
    • pp.16-22
    • /
    • 2002
  • Combustion performance of an internally cycloned circulating fluidized bed for paper sludge was discussed through a series of batch type experiments. Operation parameters such as water content, feeding mass of sludge and secondary air injection rate were varied to find out the effect on the combustion performance, which was examined with carbon conversion rate and pollutant emission such as CO and NOx. A conventional solid fuel reaction was observed in the experiments of varying water content and feeding mass of the sludge, which is characterized with kinetic limited reaction zone, diffusion limited reaction zone and transition zone. Secondary air injection with swirl enhances the mixing of the gas phase as well as the solid phase, and improves combustion efficiency accompanied with higher carbon conversion rate and lower pollutant emission rate.

  • PDF

Evaluation of the Structural Coal Combustion Model in a Swirling Pulverized Coal Combustor (탈휘발 예측 코드를 활용한 탈휘발 및 촤반응 모델 평가)

  • Joung, Daero;Han, Karam;Huh, Kang Y.;Park, Hoyoung
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.2
    • /
    • pp.32-39
    • /
    • 2012
  • In this study, pre-processor code based on structural behavior of coal is applied to predict yields, pyrolysis rate and compositions of volatile and char. These parameters are used in the devolatilization and char burnout sub-models as user-defined functions of commercial CFD code. The predicted characteristics of these sub-models are compared with those employing the conventional model based on experiment and validated against the measurement of a 2.1 MW swirling pulverized coal flame in a semi-industrial scale furnace. And the influence of the turbulence-chemistry interaction on pulverized coal combustion is analyzed.

Effects of the Smoke Reduction of Diesel Engine Operated with Ultrasonically Reformed Fuel (디젤기관의 매연저감에 미치는 초음파 영향)

  • Lee, Byoung-Oh;Kim, Yong-Guk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.88-94
    • /
    • 2010
  • In this paper, the effect of the ultrasonic energy on the diesel engine's smoke reduction has been investigated for indirect injection diesel engine. The smoke concentration of the ultrasonically reformed diesel fuel was reduced remarkably in comparison with conventional diesel fuel. And in-cylinder pressure, heat release rate and mass fraction burned was improved but combustion duration was decreased. However, The combustion durations and the smoke concentrations of both diesel fuels were proportional to the increases of engine loads. Also, When the combustion duration has been increasing, the smoke emission has been augmenting in the shape of the exponential functions.

Design of an adaptive fuzzy model predictive controller for combustion control of refuse incineration plant (쓰레기 소각로의 효율적인 연소제어를 위한 적응 퍼지모델 예측제어기 설계)

  • 박종진;강신준;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.134-138
    • /
    • 1996
  • Refuse incineration plant operations involve many kinds of uncertain factors, such as the variable physical properties of refuse as fuel and the complexity of the burning phenomenon. That makes it very difficult apply conventional control methods to the combustion control of the refuse. In this paper, an adaptive fuzzy model predictive controller is proposed for the combustion control of the refuse. In this paper, an adaptive fuzzy model predictive controller is proposed for the combustion control of the refuse. And computer simulation was carried out to evaluate performance of the proposed controller.

  • PDF

A Study on Turbulent Flame Propagation Model of S. I. Engines (스파크 점화기관의 난류 화염전파모델에 관한 연구)

  • 유욱재;최인용;전광민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2787-2796
    • /
    • 1994
  • The modeling of combustion process is an important part in an engine simulation program. In this study, calculated results using a conventional B-K model and the other model which is called GESIM were compared with experimentally measured data of a three-cylinder spark-ignition engine under wide range of operating conditions. The burn rates calculated from the combustion models were compared with the burn rate calculated from the one-zone heat release analysis that uses measured pressure data as an input data. As a result of the two models' comparison, the GESIM combustion model conformed to be closer to the data acquired from the experiment in wide operating ranges. The GESIM model has been improved by introducing a variable that considers the flame size, the area of flame conacting the piston surface into the model, based on the comparison between the experimental result and the calculated results. The improved combustion model predicts experimental results more precisely than that of GESIM combustion model.