• Title/Summary/Keyword: Conventional combustion

Search Result 449, Processing Time 0.023 seconds

Effect of Cooled-EGR on the Characteristics of Performance and Exhaust in a HCCI Diesel Engine (균일 예혼합 압축 착화 디젤 엔진의 성능 및 배출물 특성에 미치는 Cooled-EGR 효과)

  • Lee, Chang-Sik;Yoon, Young-Hoon;Kim, Myung-Yoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.35-41
    • /
    • 2005
  • The effects of cooled-ECR on the characteristics of combustion and exhaust emissions were investigated in a single cylinder HCCI diesel engine The premixed charge (gasoline or diesel) was obtained with premixing chamber and high-pressure (5.5MPa) injection system. Exhaust pressure control and cooled ECR system were used in order to reduce pressure fluctuation and to mix the exhaust gas well with the fresh intake air. The experimental results show that NOx emissions from conventional diesel engine are steeply decreased by HCCI diesel combustion with cooled-EGR in both case of gasoline and diesel premixing. But soot emissions are rapidly increased with the increase of ECR rate. The recycled exhaust gas increased the ignition delay of mixture and decreased maximum combustion pressure. HC and CO emissions of HCCI combustion are increased with ECR rate.

Effect of Air Velocity on Combustion Characteristics Scale Burner

  • Laryea, Gabriel Nii;No, Soo-Young
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • v.10 no.1
    • /
    • pp.76-82
    • /
    • 2005
  • This paper presents the combustion characteristics of hydrocarbon fuel from a conventional pressureswirl nozzle of a small-scale burner. The nozzle has orifice diameters of 0.256 mm and liquid flow rates raging from 50 to 64 mL/min were selected for the experiments. The furnace temperature distribution along the axial distance, the gas emission such as CO, $CO_2,\;NOx,\;S0_2,$ flue gas temperature, and combustion efficiency were studied. The local furnace and flue gas temperatures decreased with an increase in air velocity. At injection pressures of 1.1 and 1.3 MPa the maximum furnace temperatures occurred closer to the burner exit, at an axial distance of 242 mm from the diffuser tip. The CO and $CO_2$ concentrations decreased with an increase in air velocity, but they increased with an increase in injection pressure. The effect of air velocity on NOx was not clearly seen at low injection pressures, but at injection pressure of 1.3 MPa it decreased with an increase in air velocity. The effect of air velocity $SO_2$ concentration level is not well understood. The combustion efficiency decreased with an increase in air velocity but it increased with an increase in injection pressure. It is recommended that injection pressure less than 0.9 MPa with air velocity not above 8.0 m/s would be suitable for this burner.

  • PDF

Effects of Two-Stage Injection on Combustion and Exhaust Emission Characteristics in a HCCI Engine (2단분사법에 따른 예혼합압축착화엔진의 연소 및 배기특성)

  • Kook, Sang-Hoon;Park, Cheol-Woong;Choi, Wook;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.32-39
    • /
    • 2004
  • HCCI (Homogeneous Charge Compression Ignition) combustion has a great advantage in reducing NOx (Nitrogen Oxides) and PM (Particulate Matter) by lowering the combustion temperature due to spontaneous ignitions at multiple sites in a very lean combustible mixture. However, it is difficult to make a diesel-fuelled HCCI possible because of a poor vaporability of the fuel. To resolve this problem, the two-stage injection strategy was introduced to promote the ignition of the extremely early injected fuel. The compression ratio and air-fuel ratio were found to affect not only the ignition, but also control the combustion phase without a need for the intake-heating or EGR (Exhaust Gas Recirculation). The ignition timing could be controlled even at a higher compression ratio with increased IMEP (Indicated Mean Effective Pressure). The NOx (Nitrogen Oxides) emission level could be reduced by more than 90 % compared with that in a conventional DI (Direct Injection) diesel combustion mode, but the increase of PM and HC (Hydrocarbon) emissions due to over-penetration of spray still needs to be resolved.

Effect of EGR and Supercharging on the Diesel HCCI Combustion (디젤 예혼합 압축착화 엔진에서 배기가스 재순환과 과급의 영향)

  • Park, Se-Ik;Kook, Sang-Hoon;Bae, Choong-Sik;Kim, Jang-Heon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.58-64
    • /
    • 2006
  • Homogeneous charge compression ignition(HCCI) combustion is an advanced technique for reducing the hazardous nitrogen oxide(NOx) and particulate matter(PM) in a diesel engine. NOx could be reduced by achieving lean homogeneous mixture resulting in combustion temperature. PM could be also reduced by eliminating fuel-rich zones which exist in conventional diesel combustion. However previous researches have reported that power-output of HCCI engine is limited by the high intensive knock and misfiring. In an attempt to extend the upper load limit for HCCI operation, supercharging in combination with Exhaust Gas Recirculation(EGR) has been applied: supercharging to increase the power density and EGR to control the combustion phase. The test was performed in a single cylinder engine operated at 1200 rpm. Boost pressures of 1.1 and 1.2 bar were applied. High EGR rates up to 45% were supplied. Most of fuel was injected at early timing to make homogeneous mixture. Small amount of fuel injection was followed near TDC to assist ignition. Results showed increasing boost pressure resulted in much higher power-output. Optimal EGR rate influenced by longer ignition delay and charge dilution simultaneously was observed.

A Study on Correlation of Fuel Characteristics and Combustion Characteristics of Reformed Diesel Fuels by Ultrasonic Irradiation (II);Correlation of Chemical Structure and Cetane Number (초음파 개질 경유의 연료특성과 연소특성의 상관성에 관한 연구 (II);화학구조와 세탄가의 상관관계)

  • Lee, Byoung-Oh;Kim, Yong-Kuk;Kwon, Oh-Sung;Choi, Doo-Seuk;Ryu, Jeong-In
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.163-170
    • /
    • 2002
  • The main objective of this study is to investigate the correlation of chemical structure and cetane number of reformed diesel fuels by ultrasonic irradiation. In order to analyze the effect of the chemical structure and the cetane number of reformed diesel fuels by ultrasonic irradiation, $^1H-NMR$ was used. From the study, following conclusive remarks can be made. 1) BI(=Branch Index), aromatics percentages, and $H_{\alpha}(={\alpha}-methyl$ functional group) of the reformed diesel fuels by ultrasonic irradiation decreased more than those of the conventional diesel fuel. 2) All the cetane numbers which were calculated from carbon type structure and hydrogen type distribution of the reformed diesel fuels increased more than those of the conventional diesel fuel. 3) Using predicated equation of cetane number caculated from carbon type structure is more reasonable than that caculated from hydrogen type distribution 4) BI, aromatics percentages, and $H_{\alpha}$ on both of conventional fuel and reformed diesel fuels by ultrasonic irradiation are inversely proportional to cetane number on these fuels.

  • PDF

A Computational Study of the Supersonic Coherent Jet (초음속 코히어런트 제트에 관한 수치해석적 연구)

  • Jeong, Mi-Seon;Sanal Kumar, V.R.;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.490-495
    • /
    • 2003
  • In steel-making process of iron and steel industry, the purity and quality of steel can be dependent on the amount of CO contained in the molten metal. Recently, the supersonic oxygen jet is being applied to the molten metal in the electric furnace and thus reduces the CO amount through the chemical reactions between the oxygen jet and molten metal, leading to a better quality of steel. In this application, the supersonic oxygen jet is limited in the distance over which the supersonic velocity is maintained. In order to get longer supersonic jet propagation into the molten metal, a supersonic coherent jet is suggested as one of the alternatives which are applicable to the electric furnace system. It has a flame around the conventional supersonic jet and thus the entrainment effect of the surrounding gas into the supersonic jet is reduced, leading to a longer propagation of the supersonic jet. In this regard, gasdynamics mechanism about why the combustion phenomenon surrounding the supersonic jet causes the jet core length to be longer is not yet clarified. The present study investigates the major characteristics of the supersonic coherent jet, compared with the conventional supersonic jet. A computational study is carried out to solve the compressible, axisymmetric Navier-Stokes equations. The computational results of the supersonic coherent jet are compared with the conventional supersonic jets.

  • PDF

A Study on the Characteristic of Conversion Efficiency for Three-way Catalyst in Hydrogen-Natural Gas Blend Fueled Engine (수소-천연가스 혼합연료 엔진의 삼원촉매 전환효율 특성 연구)

  • Park, Cheol-Woong;Yi, Ui-Hyung;Kim, Chang-Gi;Lee, Janghee
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.23-30
    • /
    • 2016
  • The conventional natural gas engine realized lean combustion for the improved efficiency. However, in order to cope with exhaust gas regulations enforced gradually, the interest has shifted at the stoichiometric mixture combustion system. The stoichiometric mixture combustion method has the advantage of a three-way catalyst utilization whose purification efficiency is high, but the problem of thermal durability and the fuel economy remains as a challenge. Hydrogen-natural gas blend fuel (HCNG) can increase the rate of exhaust gas recirculation (EGR) because the hydrogen increases burning speed and lean flammability limit. The increase in the EGR rate can have a positive impact on heat resistance of the engine due to the decreased combustion temperature, and further can increase the compression ratio for efficient combustion. In this study, to minimize the exhaust emission developed HCNG engine with stoichiometric combustion method, developed three-way catalyst was applied to evaluate the conversion characteristics. The tests were carried out during the steady state and transient operating conditions, and the results were compared for both the conventional and proto-three-way catalyst of HCNG engine for city buses.

A Lagrangian Based Scalar PDF Method for Turbulent Combustion Models

  • Moon, Hee-Jang;Borghi, Roland
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1470-1478
    • /
    • 2004
  • In this paper, a new 'presumed' Probability Density Function (PDF) approach coupled with a Lagrangian tracking method is proposed for turbulent combustion modeling. The test and the investigation of the model are conducted by comparing the model results with DNS data for a premixed flame subjected in a decaying turbulent field. The newly constructed PDF, which incorporates the instantaneous chemical reaction term, demonstrates consistent improvement over conventional assumed PDF models. It has been found that the time evolution of the mean scalar, the variance and the mean reaction rate are strongly influenced by a parameter deduced by a Lagrangian equation which takes into account explicitly the local reaction rate. Tests have been performed for a moderate Damkohler number, and it is expected the model may cover a broader range of Damkohler number. The comparison with the DNS data demonstrates that the proposed model may be promising and affordable for implementation in a moment-equation solver.

Polymer Waste Incineration by Oxygen Enriched Combustion (사업장폐기물의 순산소 소각기술)

  • Han, In-Ho;Choi, Kwang-Ho;Choung, Jin-Woo
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.132-139
    • /
    • 2000
  • Oxygen enriched incineration can increase the incineration capacity for wastes and dramatically reduce air pollutant emissions such as CO and dioxine by the allowing complete combustion of wastes in incinerator. Furthermore, this technology is proven to have many benefits including an energy-saving, cost-effective, and versatile application for diverse wastes compared with the conventional air incineration technology. The reduced pollutant emissions in flue gas and higher incineration efficiency are also available when the oxygen enriched air is used for the high temperature incineration systems. On the basis of the experimental results the oxygen enrichment system is successfully applied to the rotary kiln incinerator for industrial wastes. The oxygen enriched incineration system could be allowed more compact design of incinerator and flue gas treatment system due to both increasing incineration capacity and reducing flue gas volume. Therefore, oxygen enriched incineration technology is becoming highlighted in the waste incinerator which strongly require more stable efficiency and environmentally friendly and safe operationPut Abstract text here.

  • PDF

The Low-NOx Characteristics of Premixed Lean-Burn Gas Turbine Combustor (예혼합 희박연소 가스터빈 연소기의 저 NOx 특성)

  • Pae, H.S.;Ahn, K.Y.;Park, J.I.;Ahn, J.H.;Kim, Y.M.
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.201-207
    • /
    • 1999
  • The combustion characteristics for the low NOx 50 kW-class gas turbine combustor have been experimentally investigated. In order to achieve the premixing and the lean burn combustion, the geometries of the primary zone including premixed chamber were modified from conventional combustor. The centerline profiles of CO and NO concentration, and temperature were measured for the premixed combustors with or without dilution holes in the liner. The effects of the pilot fuel injection rate and air dilution on flame stabilization and pollutant (CO, NO) emission are discussed in detail.

  • PDF