• Title/Summary/Keyword: Conventional combustion

Search Result 449, Processing Time 0.034 seconds

An Experimental Study of the Gas Turbine Slinger Combustor (가스터빈 슬링거 연소기 실험연구)

  • Choe, Seong-Man;Lee, Gang-Yeop;Lee, Dong-Hun;Park, Jeong-Bae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.68-74
    • /
    • 2006
  • An experimental study was carried out to investigate the combustion characteristics of the slinger combustor. A combustion test rig was manufactured and installed in KARI combustor test facility. From the ignition test results, we found that there were two major factors influencing the ignition limits; by increasing the rotational speed and the air mass flow rate, a better ignition performance was attained. From the combustion test results, we obtained 99.6% combustion efficiency, 15% pattern factor, and 3% profile factor. The results in this work indicate that the ignition and combustion characteristics of a slinger combustor are markedly different from those of a conventional annular combustor.

Studies on the Combustion of Anthracite (I). Combustion of Carbon Monoxide and the Furface (無燃炭 燃燒에 關한 硏究 (第 1 報). 一酸化炭素 燃燒反應 및 燃燒裝置)

  • Shin Byoung Sik;Shin Sei Kun
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.3
    • /
    • pp.186-192
    • /
    • 1975
  • In the course of anthracite briquet combustion, air draft is usually controlled to continue burning of definite amount of briquet in the conventional hollow clay cylinder with air inlet hole open for given time, so that a large amount of CO tends to be produced. Therefore, it is necessary to establish an improved combustion process to depress the yielding rate of CO and for this purpose, we performed a basic experiment in which combustion rate of CO was measured in the mixture of $N_2, O_2 $and CO gas with or without the presence charcoal at the various temperature. The observed results showed that the burning temperature of CO is about 680${\sim}700^{\circ}C$, further burning rate of it was increased with increasing the amount of draft. From these facts, longer combustion time and low CO generation are thus contradictory to each other and it has been long desired to make those two compatible somehow. The purpose of the present investigation lies in designing an effective new briquet stove to meet the above requirements. The essential feature of the new briquet stove consisted in the use of two hollow iron cylinders with different inside diameter. A cylindrical air jacket thus formed served as a path through which small amount of secondary air run from the bottom of the stove to the upper vent holes. Heat exchange occurred between the upgoing secondary air and the burning briquet, which lowered the combustion temperature of the briquet. The results observed were selfevident as anticipated. It was confirmed that the combustion time was increased tolerably due to the heat loss from the combustion zone and that CO in the flue gas was reoxidized at the upper portion of the stove by the upgoing hot secondary air. By this reoxidation reaction the concentration of CO in the flue gas was found to be about 1/20 of that in case the conventional clay cylinder was used as briquet jacket.

  • PDF

Study on the Characteristics of Performance and Exhaust Emissions of 3-Chamber GDI Engine (3-연소실형 GDI Engine의 성능 및 배기 배출물 특성에 관한 연구)

  • 김봉수;정남훈;진선호;배종욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.37-47
    • /
    • 2002
  • Recently gasoline direct injection method has been applied to gasoline engine to reduce fuel consumption rate by controlling fuel air mixture on lean condition by means of stratified charging, and to reduce simultaneously. Pollutant emissions especially NOx and CO by lowering the combustion temperature. But difficulty of controling local fuel air ratio at ignition area in flammability limit unavoidably appeared, because it is merely controlled by injection timing with spatial and temporal distribution of fuel mixture. In this study, the authors devised a uniquely shaped combustion chamber so called three-chamber GDI engine, intended to keep the more reliable fuel air ratio at ignition area. The combustion chamber is divided into three regions. The first region is in the rich combustion division, where the fuel is injected from the fuel injection valve and ignited by the spark plug. The second region is in the lean combustion division, where the combustion gas from the rich combustion division flows out and burns on lean condition. And the last region is in the main combustion division ie in the cylinder, where the gas from the above two combustion divisions mixed together and completes the combustion during expansion stroke. They found that the stable range of operation of three-chamber GDI engine on low-load condition exists in the lean area of average equivalence ratio. And they also found that the reformed engine reveals less specific fuel consumption and less pollutant emissions compared with conventional carburettor type gasoline engine.

A Numerical Study on the Internal Flow and Combustion Characteristics of the Catalytic Combustor for the 5kW MCFC Power system (5kW 급 MCFC 발전시스템 촉매연소기의 유동 및 연소 특성에 대한 수치적 연구)

  • Kim, Chong-Min;Lee, Youn-Wha;Kim, Man-Young;Kim, Hyung-Gon;Hong, Dong-Jin;Cho, Ju-Hyeong;Kim, Han-Seok;Ahn, Kook-Young
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3049-3052
    • /
    • 2008
  • MCFC(molten carbonate fuel cell) power generation system is prime candidate for the utilization of fossil based fuels to generate ultra clean power with a high efficiency. In the MCFC power plant system, a combustor performs a role to supply high temperature mixture gases for cathode and heat for reformer by using the stack off-gas of the anode which includes a high concentration of $H_2O$ and $CO_2$. Since a combustor needs to be operated in a very lean condition and to avoid excessive local heating, catalytic combustor is usually used. The catalytic combustion is accomplished by the catalytic chemical reaction between fuel and oxidizer at catalyst surface, different from conventional combustion. In this study, a mathematical model for the prediction of internal flow and catalytic combustion characteristics in the catalytic combustor adopted in the MCFC power plant system is suggested by using the numerical methods. The numerical simulation models are then implemented into the commercial CFD code. After verifying result by comparing with the experimental data and calibrated kinetic parameters of catalytic combustion reaction, a numerical simulation is performed to investigate the variation of flow and combustion characteristics by changing such various parameters as inlet configuration and inlet temperature. The result show that the catalytic combustion can be effectively improved for most of the case by using the perforated plate and subsequent stable catalytic combustion is expected.

  • PDF

Analysis of Cylinder Compression Pressure Uniformity and Valve Timing by Start Motor Current and Cylinder Pressure during Cranking (기동 모터의 전류 파형과 실린더 압력 분석을 통한 기관의 압축 압력 균일도 및 밸브 개폐 시점 이상 여부 분석)

  • Kim, In-Tae;Park, Kyoung-Suk;Shim, Beom-Joo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.133-138
    • /
    • 2011
  • Compression pressure of individual cylinder and valve timing have big influence on combustion pressure, indicated mean effective pressure (IMEP), emission, vibration, combustion noise and many other combustion parameters. Therefore, uniformity of compression pressure and valve timing became one of most important engine design and production standard. Conventional method to evaluate compression pressure uniformity is to measure each cylinder pressure by mechanical pressure gage during cranking. This conventional method causes inaccuracy of cylinder pressure measurement because of different cranking speed results from battery status and also causes high manhour and cost. To check valve timing, related FEAD parts should be disassembled and timing mark should be checked manually. This study describes and suggests new methodology to measure compression pressure by analysis of start motor current and to check valve timing by cylinder pressure with high accuracy. With this new methodology, possibility to detect leaky cylinder and wrong valve timing was observed.

Flame Visualization and Flame Characteristics of Spark Plug with Pre-ignition Chamber (예연소실 점화플러그의 화염가시화와 화염전파특성)

  • Jie, Myoung Seok;Johng, In Tae
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.3
    • /
    • pp.51-58
    • /
    • 2016
  • New concept spark plug was developed to study its influence on the combustion characteristics of SI engine. It has pre-ignition chamber at the lower end of spark plug and flame hole, in which fresh mixture gas can be put in through the flame hole without any fuel supply system. This spark plug was tested in a single cylinder engine dynamometer for different air fuel ratio to measure the fuel consumption rate, emission gases, and MBT timing. And constant volume combustion chamber was made to understand flame characteristics of spark plug. New spark plug induced fast burn compared to the conventional spark plug and its effects were increased in lean air fuel ratio. Pre-ignition chamber spark plug with 5 holes which had adjusted size was more stable and effective in combustion performance than pre-ignition chamber spark plug with 1 hole. And its effects showed larger differences in lean air fuel ratio than stoichiometric condition. Flame kernel and flame growth process of conventional spark plug and pre-ignition chamber spark plug studied by flame visualization of schlieren method.

Development of A New Concept Rotary Engine (I) - Concept and theoretical performance analysis - (신개념 로터리 엔진의 개발 (I) - 개념과 이론적 성능 분석 -)

  • 오문근;이규승;박원엽
    • Journal of Biosystems Engineering
    • /
    • v.28 no.1
    • /
    • pp.27-34
    • /
    • 2003
  • Present combustion engines have reached almost at the limit of development due to the fundamental structural problems. This study was carried out to propose a new concept internal combustion engine which has great potential advantages to the conventional engines. Proposed new concept engine is a kind of rotary engine. A rotor is rotating concentrically in a cylinder which is divided into two partitioning valves. and it makes four compartments in the cylinder. The volumes of each of four compartments are changing continuously with the rotor movement, and performs the functions of intake, compression. expansion and exhaust simultaneously. The results of this study can be summarized as follows. 1. Expected theoretical thermal efficiency is 44.9 percent at the condition of 1000rpm and compression ratio of 8.0. which is almost the same as that of the conventional engines. i.e., piston and Wankel rotary engine. 2. The new concept engine has 2. working strokes in every revolution. Therefore. the new concept engine can reduce the specific weight and volume than four-stroke piston engine. 3. The torque variation is very small. therefore minimal noise and vibration are expectable. 4. The new concept engine can reduce mechanical energy loss than piston engine because neither crank mechanism nor eccentrical motion exists.

Analysis of Cylinder Compression Pressure & Valve Timing by Motoring Current & Crank Signal during Cranking (모터링시 전류 파형과 크랭크각 센서를 이용한 기관의 압축압력 및 밸브 타이밍 분석)

  • Kim, In-Tae;Park, Kyoung-Suk;Shim, Beom-Joo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.45-50
    • /
    • 2011
  • Compression pressure of individual cylinder and valve timing have big influence on combustion pressure, indicated mean effective pressure (IMEP), emission, vibration, combustion noise and many other combustion parameters. Conventional method, however, to check compression pressure uniformity is done by mechanical pressure gage and valve timing is checked manually. This conventional method causes inaccuracy of cylinder pressure measurement because of different cranking speed results from battery status and temperature. Also to check valve timing, related FEAD parts should be disassembled and timing mark should be checked. This study describes and suggests new methodology to measure compression pressure by analysis of start motor current and to check valve timing by cylinder pressure with high accuracy. Results, it is found that detection of bulky as well as small leaky cylinder is possible by cranking motor current analysis and wrong valve timing can be detected by cylinder pressure analysis and cam and crank sensor signal.

Exhaust Emissions Characteristics on the SI Engine according to the Air-Fuel Mixture with Ozone (혼합기 오존 첨가에 따른 SI기관의 배기배출물 특성)

  • Lee, B.H.;Yi, C.S.;Lee, Y.H.;Lee, C.K.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.5-10
    • /
    • 2006
  • In a conventional and lean operating engine, the state of mixture is very important in the combustion and emission characteristics. Lean operation is known to decrease the formation while maintaining a good fuel economy, but the unstable operation due to misfire and erratic combustion prevents engines from being operated at very lean mixtures, so both combustion rates and exhaust emission formation need to be satisfied comparably. In this study, it is designed and experimented the modified engine, and analyzed the combustion and exhaust emission according to the change of engine speed and with adding ozone. The conclusions were drawn out and enumerated as follows. 1. At the experimental result of automobile diesel engine, it has been verified that the formation of particulate matter(PM) gas is able to be lower with the addition of optimum quantities of ozone. 2. Carbon monoxide(CO) was formed by the lack of oxygen and the thermal dissociation in the combustion process. Therefore, with the change of swirl valve's position and addition of oxygen and ozone, CO formation was decreased by the increasing of excessive O2, but it was increased by the temperature of combustion gas growing higher. As a result of the two effects, CO formation was decreased in this study. 3. Hydrocarbon(HC) was formed by the lack of O2, and the flow of mixture in cylinder. According to opening of the swirl valve and adding the oxygen and ozone, hydrocarbon gas was decreased by 20%, 9%, and 27.5%, respectively. 4. Nitric oxides($NO_x$) was strongly affected by the combustion gas temperature. As a result of respectively experimental conditions, $NO_x$ formation was increased about 20% due to (be the) high(er) combustion gas temperature.

  • PDF

Heat transfer characteristics around a circular combustion chamber of kerosene fan heater (석유 팬 히터의 연소실 주변 열전달 특성)

  • Kim, Jang-Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.551-561
    • /
    • 1998
  • This paper was studied to understand the characteristics of heat transfer coefficients and surface temperature distributions around a circular combustion chamber within the heat-intercept duct of kerosene fan heater. The experiment was carried out in the heat-intercept duct of kerosene fan heater attached to the blow-down-type subsonic wind tunnel with a test section of 240 mm * 240 mm * 1200 mm. The purpose of this paper was to obtain the basic data related with normal combustion for new design from conventional kerosene fan heater, and to investigate the effect of surface temperature, local and mean heat transfer coefficients versus flow-rate of convection axial fan according to the variations of heat release conditions from kerosene fan heater during normal combustion. Consequently it was found that (i) the revolution of convection axial fan during combustion had a smaller value than that of non-combustion because of the thermal resistance due to the high temperature in the heat-intercept duct, (ii) the pressure ratio P$_{2}$/P$_{1}$ had a comparatively constant value of 0.844 according to the revolution increase of turbo fan and the heating performance of kerosene fan heater had a range of 1,494 ~ 3,852 kcal/hr, (iii) the local heat transfer coefficient around a circular combustion chamber had a comparatively larger scale in the range of 315 deg. < .theta. < 45 deg. than that in the range of 90 deg. < .theta. < 270 deg. as a result of heat transfer difference between front and back of a circular combustion chamber, and (iv) the mean heat transfer coefficient around a circular combustion chamber increased linearly like a H$_{m}$=95.196Q+104.019 in condition of high heat release according to the increase of flow-rate of axial fan.n.