• 제목/요약/키워드: Conventional combustion

검색결과 449건 처리시간 0.019초

대두유 바이오 디젤연료가 압축 착화 연소에서 배기가스에 미치는 영향 (Effects of Soybean Biodiesel Fuel on Exhaust Emissions in Compression Ignition Combustion)

  • 한만배
    • 대한기계학회논문집B
    • /
    • 제34권10호
    • /
    • pp.941-946
    • /
    • 2010
  • 1.7L 커먼레일 직접분사 디젤엔진에 대하여 바이오 디젤 연료가 conventional 연소(PM-NOx 트레이드오프 존재)와 저온 연소(low temperature combustion, LTC)에서 배기가스 배출에 미치는 영향을 분석하였다. LTC 연소는 conventional 연소 대비 다량의 EGR 과 연료분사 조건 최적화를 통하여 이루어졌다. 실험에 사용한 두 가지 연료는 초저유황 디젤연료(ultra low sulfur diesel fuel, ULSD), ULSD 에 대두유를 20%(vol. base)혼합한 바이오 디젤 연료(B20)이다. 사용된 연료에 관계없이 LTC 연소를 통하여 conventional 연소 대비 PM 및 NOx 의 동시 저감이 가능하였다. 동일한 엔진작동 조건에 대하여 conventional 연소의 경우 B20 는 ULSD 보다 PM은 적게 배출되나, NOx 는 많이 배출되었다. LTC 연소의 경우 B20 는 ULSD 보다 PM 및 NOx 생성이 많았다.

정적연소실내에서의 플라즈마 제트 점화에 대한 연소기간중의 열손실산정 (Evaluation of Heat Loss by Means of Plasma Jet Ignition during Combustion Duration in the Constant Volume Vessel)

  • 김문헌;문경태;박정서;김홍성
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.96-103
    • /
    • 2003
  • In this paper, the heat loss to the constant volume vessel wall was investigated using instantaneous heat flux sensor, schlieren visualization, pressure rise curve. And the heat loss characteristics of plasma jet ignition were compared with conventional spark ignition. In case of plasma jet ignition, the flame kernel moves toward the center of combustion vessel in the initial period of combustion, and the flame surface spread out to the vessel wall. However, in case of conventional spark ignition, the flame surface contact with combustion vessel wall in the initial period of combustion. As a result, heat loss in the combustion duration for conventional spark ignition increase faster than that of plasma jet ignition. And the combustion enhancement rate of plasma jet ignition is higher than that of conventional spark ignition, and it was found that the heat loss rate is inversely proportional to the combustion enhancement rate.

순산소 및 배가스 재순환 연소 기술 (Oxy-Fuel and Flue Gas Recirculation Combustion Technology: A Review)

  • 김현준;최원영;배수호;신현동
    • 대한기계학회논문집B
    • /
    • 제32권10호
    • /
    • pp.729-753
    • /
    • 2008
  • Oxy-fuel combustion is a reliable way for the reduction of pollutants, the higher combustion efficiency and the separation of carbon dioxide. The review of recent research trends and the prospects of oxy-fuel combustion were presented. The difference in characteristics among oxy-fuel combustion, conventional air combustion, oxy-fuel combustion with flue gas recirculation (FGR) technique was investigated. Recent experiments of oxy-fuel combustion with/without FGR were surveyed in various ways which are optimized burner design, flame characteristics, the soot emission, the radiation effect, the NOx reduction and the corrosion of combustor. Numerical simulation is more important in oxy-fuel combustion because flame temperature is so high that conventional measurement devices have a restricted application. Equilibrium and non-equilibrium chemical reaction mechanisms for oxy-fuel combustion were investigated. Combustion models suitable for the numerical simulation of non-premixed oxy-fuel flame were surveyed.

폐목 톱밥 연료의 저NOx MILD연소 (Low NOx MILD Combustion for Sawdust Fuel)

  • 심성훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.153-156
    • /
    • 2008
  • MILD combustion has been successfully applied to gaseous fuels and few commercial systems are now in operation. Extending MILD combustion applicability to solid fuel of sawdust is the focus of the present work. The MILD combustion furnace at the University of Adelaide in Australia was used in this study. A measurement of $O_2$ and CO emissions have been carried out in parallel with consideration of NOx emission and compared in each modes of conventional natural gas combustion, natural gas MILD combustion, NOx emission in natural gas MILD combustion mode can be reduced to 20% in comparison with conventional combustion. Emission in cases of air carrying sawdust combustion and $CO_2$ carrying sawdust combustion were also compared. Air and $CO_2$ were sued as a carry gas for the sawdust. It was found that MILD conditions are possible for sawdust particles of less than $355{\mu}m$ without additional air pre-heating. It was also found that when using $CO_2$ as the carry gas the flame inside the furnace was not visible anymore and that NOx emission dropped to less than two folds.

  • PDF

디젤엔진의 부분 예혼합 연소 및 배기 특성에 대한 분사전략의 영향 (Effects of Injection Strategies on the Partial Premixed Charge Combustion and Emission Characteristics in a Diesel Engine)

  • 김재웅;김영진;박상기;이기형
    • 한국자동차공학회논문집
    • /
    • 제21권4호
    • /
    • pp.83-88
    • /
    • 2013
  • Recently, PCCI (premixed charge compression ignition) combustion is studied to reduce both NOx and PM because of homogeneous mixture formation and lower combustion temperature. It has also merit of increasing thermal efficiency owing to better air-fuel mixure. However, it is well known that PCCI combustion has a weakness in fuel economy because PCCI combustion tends to start before TDC. Therefore, it is necessary to find an optimal conditions for PCCI combustion which maintains reduction of NOx, PM and increase of thermal efficiency. In this study, pPCCI combustion was realized by adding early injection strategy to a conventional diesel engine. In addition, the characteristics of pPCCI combustion was analized by comparing conventional diesel injection strategy. The results show that NOx and PM per power in pPCCI combution were reduced compared to a conventional diesel combustion.

정적 연소기내의 스월 속도 변화에 따른 플라즈마 제트 점화의 연소특성 (Combustion Characteristicsof Plasma JetIgnition for Different Swirl Velocity in a Constant Volume Vessel)

  • 김문헌;박정서;이주환
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.75-83
    • /
    • 2001
  • This paper presents the evaluation of combustion characteristics of sing-hole plasma jet ignitions in comparison with conventional spark ignition for variable of swirl velocity. Plasma jet plugs are three types according to ejecting directions : center of chamber, positive and negative swirl flow direction. Experiments are carried out for equivalent ratio 1.0 of LPG-air mixture in a constant volume cylindrical vessel. Not only the flame propagation is photographed at intervals, but the pressure variation in the combustion chamber is also recorded throughout the entire combustion process. The results show that the plasma jet ignitions and spark ignition enhance the overall combustion rate by increasing the swirl velocity. The dependence of the combustion rate swirl velocity leade to the conclusion that the placma jet plug, which ejects plasma jet to the cwnter of combustion chamber is the most desirable ignitor than other plugs.

  • PDF

정적연소기에서 토치의 체적 변화에 따른 메탄의 연소특성 파악 (A Study on Combustion Characteristic Methane Fuel according to Torch Volume Variation in a Constant Volume Combustion Chamber)

  • 권순태;박찬준;엄인용
    • 한국가시화정보학회지
    • /
    • 제9권1호
    • /
    • pp.42-48
    • /
    • 2011
  • Six different size of torch-ignition device were applied in a constant volume combustion chamber for evaluating the effects of torch-ignition on combustion. The torch-ignition device was designed for six different volumes and same orifice size. The combustion pressures were measured to calculate the mass burn fraction and combustion enhancement rate. In addition, the flame propagations were visualized by shadowgraph method for the qualitative comparison. The result showed that the combustion pressure and mass burn fraction were increased when using the torch ignition device. And the combustion duration were decreased. The combustion enhancement rates of torch-ignition cases were improved in comparison with conventional spark ignition. Finally, the visualization results showed that the torch-ignition induced faster burn than conventional spark ignition due to the earlier transition to turbulent flame and larger flame surface, during the initial stage. Finally, the initial flame propagation was affected by torch-ignition volume.

정적연소기에서 토치의 노즐 직경에 따른 메탄의 연소특성 파악 (A Study on Combustion Characteristics of Methane Fuel according to Torch Nozzle Diameter in a Constant Volume Combustion Chamber)

  • 이정만;권순태;박찬준;엄인용
    • 한국가시화정보학회지
    • /
    • 제8권1호
    • /
    • pp.19-24
    • /
    • 2010
  • Five different size of orifice were applied in a constant volume combustion chamber for evaluating the effects of torch-ignition on combustion. The initial flame development and flame propagation were analyzed by the mass burned fraction and combustion enhancement rate. The combustion pressures were measured to calculate the mass burned fractions and the combustion enhancement rates. In addition, the flame propagations were visualized by the shadowgraph method for the qualitative comparison. The result showed that the combustion pressure and mass burned fraction were increased when using the torch-ignition device. The combustion enhancement rates of torch-ignition cases were improved in comparison with conventional spark ignition. Finally, the visualization results showed that the torch-ignition induced faster burn than conventional spark ignition due to the earlier transition to turbulent flame and larger flame surface, during the initial stage.

압축 착화 엔진에서 기존 및 저온 디젤 연소에서 발생하는 배기가스의 입자상 물질에 관한 특성 비교 (Assessment of Particulate Matters from an Exhaust Gas for Conventional and Low Temperature Diesel Combustion in a Compression Ignition Engine)

  • 정용진;신현동;배충식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.183-186
    • /
    • 2012
  • The characteristics of particulate matters (PM) from an exhaust gas for conventional and low temperature diesel combustion (LTC) in a compression ignition engine was experimentally investigated by the elemental, thermogravimetric analysis. Morphology of PM was also studied by the transmission electron microscopy. PM for LTC shows that it contains more volatile hydrocarbons, which can be easily evaporated than conventional regime. PM for LTC is comprised of smaller primary particles.

  • PDF

디젤/천연가스 반응성제어 압축착화 엔진에서 피스톤 형상에 따른 연소 특성 (Influence of Piston Bowl Geometry on Combustion of a Diesel/CNG Reactivity Controlled Compression Ignition Engine)

  • 김현수;김우영;배충식
    • 한국분무공학회지
    • /
    • 제26권2호
    • /
    • pp.57-66
    • /
    • 2021
  • The reactivity controlled compression ignition (RCCI) is the technology that provides two different types of fuel to the combustion chamber with the advantage of significantly reducing particulate matter and nitrogen oxides emissions. However, due to the characteristics of lean combustion, combustion efficiency is worsened. The conventional type of pistons for conventional diesel combustion (CDC) has mostly been used in the researches on RCCI. Because the pistons for CDC are optimized to enhance flow and target spray, the pistons are unsuitable for RCCI. In this study, a piston that is suitable for RCCI is designed to improve combustion efficiency. The new piston was designed by considering the factors such as squish geometry, bowl depth, and surface area. The experiment was carried out by fixing the energy supply to 0.9kJ/cycle and 1.5kJ/cycle respectively. The two pistons were quantitatively compared in terms of thermal efficiency and combustion efficiency.