• Title/Summary/Keyword: Conventional TENS

Search Result 70, Processing Time 0.025 seconds

Implementation of a Low Actuation Voltage SPDT MEMS RF Switch Applied PZT Cantilever Actuator and Micro Seesaw Structure (PZT 캔틸레버 구동기와 마이크로 시소구조를 적용한 저전압 SPDT MEMS RF 스위치 구현)

  • Lee, Dae-Sung;Kim, Won-Hyo;Jung, Seok-Won;Cho, Nam-Kyu;Sung, Woo-Kyeong;Park, Hyo-Derk
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.147-150
    • /
    • 2005
  • Low actuation voltage and no contact stiction are the important factors to apply MEMS RF switches to mobile devices. Conventional electrostatic MEMS RF switches require several tens of voltages for actuation. In this paper we propose PAS MEMS RF switch which adopt PZT actuators and seesaw cantilevers to meet the above requirements. The fundamental structures of PAS MEMS switch were designed, optimized, and fabricated. Through the developed processes PAS SPDT MEMS RF switches were successfully fabricated on 4" wafers and they showed good electrical properties. The driving voltage was less than 5 volts. And the insertion loss was -0.5dB and the isolation was 35dB at 5GHz. The switching speed was about 5kHz. So these MEMS RF switches can be applicable to mobile communication devices or wireless multi-media devices at lower than 6GHz.

  • PDF

Case Studies of Nonlinear Response Structural Optimization Using Equivalent Loads (등가하중법을 이용한 비선형 반응 구조최적설계 사례연구)

  • Kim, Yong-Il;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.11
    • /
    • pp.1059-1068
    • /
    • 2007
  • Nonlinear response structural optimization is performed using equivalent loads (NROEL). Nonlinear response optimization is extremely cost because many nonlinear analyses are required. In NROEL, the external loads are transformed to the equivalent loads (EL) for linear static analysis and linear response optimization is carried out based on the EL in a cyclic manner until the convergence criteria are satisfied. EL is the load set which generates the same response field of linear analysis as that of nonlinear analysis. The primitive from of theory has been published. In this research, the theory is investigated with large scale example problems. Four examples are solved by using NROEL. Conventional optimization with sensitivity analysis using the finite difference method (FDM) is also applied to the same examples. Moreover, response surface optimization method is applied to the last two examples. The results of the optimizations are compared. In nonlinear response optimization of large scale problems, hundreds (or even thousands) of nonlinear analyses are expected to satisfy the convergence criteria. However, in nonlinear response optimization using equivalent loads, only tens of nonlinear analyses are required. The results are discussed and the usefulness of NROEL is presented.

Discovery of Giant Magnetostriction in Amorphous RFe$_2$B (R = Sm, Tb) Alloys

  • Kim, Jai-Young
    • Journal of Magnetics
    • /
    • v.1 no.2
    • /
    • pp.64-68
    • /
    • 1996
  • Compared with the conventional magnetostriction in Ni alloys which are in the order of several tens ppm (Parts Per Million =10-6), RFe$_2$(R = rare earth element) Laves Phase intermetallic compounds show large saturation magnetostriction in the range of a few thousands ppm. However, the large external magnetic field necessary to obtain saturatio magnetostriction has due to large magnetocrystalline anisotropy energy restrained the applicationof magnetostriction materials in RFe$_2$intermetallic compounds. As a result of its solution, the largest published value of effective giant magnetostriction in a low external magnetic field (less than a few hundred Oe) is reported in this paper by means of amorphisation of RFe$_2$intermetallic compounds with the addition of boron, as a half metal. For the amorphous (SmFe$_2$)0.97 B0.03 alloys, the effective magnetostriction of -545 and -610 $\times$ 10-6 is obtained at 400 and 1,000 Ie, respectively. Moreover, the effective magnetostriction of 590 and 630$\times$10-6 in the amorphous (TbFe$_2$)0.98 B0.02 alloys is also found at 400 and 1,000 Oe, respectively. This result will provide a clue to understanding the effect of half metal on anomalous increase of the effective giant magnetostriction and attract the great attention for magnetostriction applications.

  • PDF

Optical and Mechanical Characteristics of NF System and NF Gap Control (근접장 광학계의 광학적 및 기계적 특성 분석과 근접장 간격제어)

  • Oh, Hyeong-Ryeol;Lee, Jun-Hee;Gweon, Dae-Gab;Kim, Soo-Kyung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1528-1532
    • /
    • 2000
  • The conventional optics and near field optics are compared numerically in the view points of the spot size and propagation characteristics. The decaying characteristics of near field light require the optics to access the object within several tens of nanometers. Therefore the gap control is one of the main issues in the near field optics area. In this paper the gap control is done by using the shear force of the NF(Near Field) probe and the characteristics are examined. The probe is modeled as a 2'nd order mass-spring-damper system driven by a harmonic force. The primary cause of the decrease in vibration amplitude is due to the damping force - shear force - between the surface and the probe. Using the model, damping constant and resonance frequency of the probe is calculated as a function of probe-sample distance. Detecting the amplitude and phase shift of the NF probe attached to the high Q-factor piezoelectric tuning fork, we can control the position of the NF probe about 0 to 50nm above the sample. The feedback signal to regulate the probe-sample distance can be used independently for surface topography imaging. 3-D view of the shear force image of a testing sample with the period of $1{\mu}m$ will be shown.

  • PDF

Development of Process and Equipment for Roll-to-Roll convergence printing technology

  • Kim, Dong-Su;Bae, Seong-U;Kim, Chung-Hwan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.19.1-19.1
    • /
    • 2010
  • The process of manufacturing printed electronics using printing technology is attracting attention because its process cost is lower than that of the conventional semiconductor process. This technology, which offers both a lower cost and higher productivity, can be applied in the production of organic TFT (thin film transistor), solar cell, RFID(radio frequency identification) tag, printed battery, E-paper, touch screen panel, black matrix for LCD(liquid crystal display), flexible display, and so forth. In general, in order to implement printed electronics, narrow width and gap printing, registration of multi-layer printing by several printing units, and printing accuracy of under $20\;{\mu}m$ are all required. These electronic products require high precision to the degree of tens of microns - in a large area with flexible material, and mass productivity at low cost. As such, the roll-to-roll printing process is attracting attention as a mass production system for these printed electronic devices. For the commercialization of this process, two basic electronic ink technologies, such as conductive ink and polymers, and printing equipment have to be developed. Therefore, this paper addressed basis design and test to develop fine patterning equipment employing the roll-to-roll printing equipment and electronic ink.

  • PDF

A Study on the LQG Precision Tension Control of a Dancer System for a Production of Printed Electronics in Roll-to-roll Systems (Roll-to-roll 시스템에서 인쇄전자 생산을 위한 댄서 시스템의 LQG 정밀 장력 제어에 대한 연구)

  • Seong, Jin-Woo;Kang, Hyun-Kyoo;Shin, Kee-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.10
    • /
    • pp.65-73
    • /
    • 2009
  • For mass production of printed electronics in roll-to-roll fashion, precision tension control is important to reduce register errors. Register error should be minimized within several to tens of microns for many electronic devices to be manufactured through printing technology. In order to achieve this goal, tension disturbance must be attenuated before printing process within a certain range. In this paper, a certain tension range which allows maintaining register error within 10 micron was defined with specific operating conditions. A LQG controller was proposed instead of the conventional PI controller for precision tension control using a multivariable feedback. A guideline to determine design parameters for calculating LQ gain was proposed. The proposed LQG controller was compared to both PI controller and LQ regulator with white noise by numerical simulations. Results showed that the proposed LQG controller was effective for attenuating tension disturbance with white noise.

Development of Large-area Two-photon Stereolithography Process for the Fabrication of Large Three-dimensional Microstructures (대면적 3 차원 마이크로 형상제작을 위한 스테이지 스캐닝 시스템을 이용한 이광자 흡수 광조형 공정 개발)

  • Lim, Tae-Woo;Son, Yong;Yi, Shin-Wook;Kong, Hong-Jin;Park, Sang-Hu;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.122-129
    • /
    • 2008
  • Two-photon stereolithography is recognized as a promising process for the fabrication of three-dimensional (3D) microstructures with 100 nm resolution. Generally, beam-scanning system has been used in the conventional process of two-photon stereolithography, which is limited to the fabrication of micro-prototypes in small area of several tens micrometers. For the applications to 3D high-functional micro-devices, the fabrication area of the process is required to be enlarged. In this paper, large-area two-photon stereolithography (L-TPS) employing stage scanning system has been developed. Continuous scanning method is suggested to improve the fabrication speed and parameter study is conducted. An objective lens of high numerical aperture (N.A.) and high strength material were employed in this system. Through this work, 3D microstructures of $600*600*100\;{\mu}m$ were fabricated.

Analysis of the Secondary Battery Charge/Discharge System Using State Space Averaging Method (상태공간평균화법에 의한 2차전지 충방전 시스템의 해석)

  • Won, Hwa-Young;Chae, Soo-Yong;Lee, Hyoung-Ju;Kim, Hee-Sun;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.13-15
    • /
    • 2008
  • Charging or discharging secondary batteries such as a lithium-ion battery is essential in the stage of production and takes long time over two hours. And the charge/discharge system is operated with high switching frequency over several tens kHz. Therefore, to simulate such a system in the conventional way takes very long time and huge files are produced. Finally, the simulation would be unable with general PC class. In this paper, the lithium-ion battery charge/discharge system is analyzed by using state space averaging method. As a result, the simulation time is reduced dramatically and the charge/- discharge characteristics of the lithium-ion battery can be observed.

  • PDF

Two-dimensional Numerical Simulation of a Pulsed Heat Source High Temperature Inert Gas Plasma MHD Electrical Power Generator

  • Matsumoto, Masaharu;Murakami, Tomoyuki;Okuno, Yoshihiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.589-596
    • /
    • 2008
  • Performance of a pulsed heat source high temperature inert gas plasma MHD electrical power generator, which can be one of the candidates of space-based laser-to-electrical power converter, is examined by a time dependent two dimensional numerical simulation. In the present MHD generator, the inert gas is assumed to be ideally heated to about $10^4K$ pulsed-likely within short time(${\sim}1{\mu}s$) in a stagnant energy input volume, and the energy of high temperature inert gas is converted to the electricity with the medium of pure inert gas plasma without seeding. The numerical simulation results show that an enthalpy extraction ratio(=electrical output energy/pulsed heat energy) of several tens of % can be achieved, which is the same level as the conventional seeded non-equilibrium plasma MHD generator. Although there still exist many phenomena to be clarified and many problems to be overcome in order to realize the system, the pulsed heat source high temperature inert gas MHD generator is surely worth examining in more detail.

  • PDF

A Multi-Level Flash Translation Layer for Large Capacity Solid State Drives

  • Kim, Yong-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.2
    • /
    • pp.11-18
    • /
    • 2021
  • The flash translation layer(FTL) of SSD maps the logical page number requested from the host to the actual recorded flash memory page number. It is very important to reduce the amount of RAM used to manage the mapping information. In the existing demand-based FTLs, two-level method is applied in which mapping information is also recorded in flash memory pages and only their addresses are managed as a table in RAM. As the capacities of SSDs are growing to tens of terabytes, the amount of RAM for mapping table becomes too large. In this paper, ML-FTL was proposed as a method of managing mapping information in three levels to reduce the amount of RAM required drastically. From an evaluation, the increase in overhead was minimal compared to the conventional two-level method by properly utilizing cache.