• Title/Summary/Keyword: Conventional Injection Molding

Search Result 143, Processing Time 0.022 seconds

The Behavior of Shrinkage on PMMA in Injection Molding Compression Molding (사출압축성형시 PMMA 재료의 성형수축거동)

  • Choi, Y.S.;Han, S.R.;Jeong, Y.D.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.83-89
    • /
    • 2005
  • Molding shrinkage is one of the problems to be solved in conventional injection molding. Despite many trying-out has been to solve it, intrinsic cause of shrinkage such as orientation and thermal exchange between melt and mold has not been solved yet. For reducing shrinkage and residual stress on molding, injection compression molding process was invented. In this study, experiments about effects of injection compression molding's parameters on shrinkage of PMMA molding were conducted and compared with conventional injection molding's shrinkage. Before the injection compression molding experiment, molding shrinkage rate was predicted by analyzing pvT diagram and was compared with the results of experiment. The shrinkage rate of injection compression molding was lower than convention injection molding's one which was different from the predicted shrinkage. The reason was observed that the experimental mold was not a proper type for injection compression, flowing backward of melt into nozzle and unreasonable mechanism of injection molding machine.

  • PDF

A Study on the Molding Characteristics of Injection Compression Molding Through Computer Simulation (컴퓨터 해석을 통한 사출압축성형의 성형특성에 관한 연구)

  • Chun, Y.H.;An, H.G.;Lyu, M.Y.
    • Elastomers and Composites
    • /
    • v.47 no.4
    • /
    • pp.341-346
    • /
    • 2012
  • Injection molding is one of the widely used polymer processing operations. It is being used for not only conventional injection molding but gas injection molding, water injection molding, and injection compression molding. Injection compression molding involves injection and compression operation, and it gives uniform physical property and high dimensional quality of product. In this study, injection compression characteristics for various product shapes have been investigated by computer simulation. Product containing side wall showed not much effective in injection compression molding since wall thickness direction was perpendicular to the compression direction. Uniform and low shrinkage was observed in injection compression molding comparing conventional injection molding. Subsequently injection compression molding can be used for molding precise product. Optimal injection compression molding condition was obtained using design of experiment for plastic lens and the results were compared with conventional injection molding.

The Behavior of Shrinkage on PMMA in Injection Compression Molding (사출압축성형시 PMMA 재료의 성형수축거동)

  • Choi Y.S.;Kang C.M.;Jeong Y.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.589-592
    • /
    • 2005
  • Molding shrinkage s variation is one of the problems to be solved in conventional injection molding. Despite many trying-out has been to solve these, intrinsic causes of shrinkage such as orientation and thermal exchange between melt and mold has yet not solved. For reducing shrinkage and residual stress on molding, injection compression molding process was invented. In this study, experiments about effect of injection compression molding's parameters on shrinkage of molding were conducted with PMMA and compared with conventional injection molding's shrinkage. Before the injection compression molding experiment, molding shrinkage rate was predicted by analyzing pvT graph and was compared with the results of experiment. The shrinkage rate of injection compression molding was lower than convention injection molding' one but was different from the predicted shrinkage. The reason was observed that experiment mold as not positive type, flowing backward of melt into nozzle and unreasonable mechanism of injection molding machine.

  • PDF

A Study on Cycle Time and Power Saving Effect of a Hydraulic Hybrid Injection Molding Machine using a Servo Motor (서보모터를 이용한 유압 하이브리드식 사출성형기의 공정시간 및 절전효과에 관한 연구)

  • Yun, Hongsik;Kim, Sungdong
    • Journal of Drive and Control
    • /
    • v.17 no.3
    • /
    • pp.15-25
    • /
    • 2020
  • The cycle time and power saving effect of a hydraulic hybrid injection molding machine using a servo motor are considered in this paper. In order to verify control characteristics, such as pressure and speed, experiments were performed with the hydraulic hybrid injection molding machine, clamping force of 110 ton. The power consumption and production cycle time of a conventional hydraulic injection molding machine were measured to compare its performances with the hydraulic hybrid injection molding machine. An injection molding machine with a clamping force of 1300 ton was used as the conventional machine, the hybrid machine was implemented by replacing its induction motors with servo motors. In the remodeled hybrid machine, experiments were performed to investigate how the displacement of the mold clamping pump affects the power consumption and production cycle time. The results showed that the production cycle time of the hybrid injection molding is similar to a conventional hydraulic injection molding machine but with a significant energy saving of about 40%.

The Effect of Various Molding Methods for Precision Optical Products Using Birefringence Analysis (정밀 광학부품의 복굴절 분석을 통한 각종 성형법의 영향에 관한 연구)

  • Min, I.K.;Cho, S.W.;Yoon, K.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.1
    • /
    • pp.48-53
    • /
    • 2013
  • As the adoption of injection molding technology increases, injected-molded optical products require higher dimensional accuracy and optical stability than ever before. In the present study, four kinds of molding methods, i.e., conventional injection molding (CIM), injection/compression molding (ICM), rapid heat and cooling the mold(RHCM) and rapid injection/compression molding (RICM) were selected in order to investigate the optical anisotropy of a 7 inch Light Guide Plate(LGP) by examining the gap-wise distribution of birefringence and the extinction angle. The results indicate that the compression process can decrease flow-induced birefringence over the whole region and that rapid heating can decrease the birefringence level better than conventional molding. In addition, for the combination of compression and rapid heating a reversal flow was detected from the distribution of the extinction angle near the gate.

Improvement of Flow Characteristics for Thin-Wall Injection Molding by Rapid Beating (급속 가열에 의한 박육 사출성형의 유동특성 개선)

  • Kim, Byung;Park, Keun
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.9-12
    • /
    • 2005
  • The rapid thermal response (RTR) molding is a novel process developed to raise the temperature of mold surface rapidly to the polymer melt temperature prior to the injection stage and then cool rapidly to the ejection temperature. The resulting filling process is achieved inside a hot mold cavity by prohibiting formation of frozen layer so as to enable thin wall injection molding without filing difficulty. The present work covers flow simulation of thin wall injection molding using the RTR molding process. In order to take into account the effects of thermal boundary conditions of the RTR mold, coupled analysis with transient heat transfer simulation is suggested and compared with conventional isothermal analysis. The proposed coupled simulation approach based on solid elements provides reliable thin wall flow estimation fur both the conventional molding and the RTR molding processes

  • PDF

A Study on Improvement of Flow Characteristics for Thin-Wall Injection Molding by Rapid Mold Heating (급속 금형가열에 의한 박육 사출성형의 유동특성 개선에 관한 연구)

  • Park Keun;Kim Byung H.
    • Transactions of Materials Processing
    • /
    • v.15 no.1 s.82
    • /
    • pp.15-20
    • /
    • 2006
  • The rapid thermal response (RTR) molding is a novel process developed to raise the temperature of mold surface rapidly to the polymer melt temperature prior to the injection stage and then cool rapidly to the ejection temperature. The resulting filling process is achieved inside a hot mold cavity by prohibiting formation of frozen layer so as to enable thin wall injection molding without filling difficulty. The present work covers flow simulation of thin wall injection molding using the RTR molding process. In order to take into account the effects of thermal boundary conditions of the RTR mold, coupled analysis with transient heat transfer simulation is suggested and compared with conventional isothermal analysis. The proposed coupled simulation approach based on solid elements provides reliable thin wall flow estimation for both the conventional molding and the RTR molding processes.

Finite Element Analysis of Injection/Compression Molding Process (사출압축성형 공정에 대한 유한요소 해석)

  • 이호상
    • Transactions of Materials Processing
    • /
    • v.13 no.2
    • /
    • pp.180-187
    • /
    • 2004
  • A computer code was developed to simulate the filling stage of the injection/compression molding process by a finite element method. The constitutive equation used here was the compressible Leonov model. The PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses through the linear stress-optical law. Simulations of a disk part under different process conditions including the variation of compression stroke and compression speed were carried out to understand their effects on birefringence variation. The simulated results were also compared with those by conventional injection molding.

Prediction of Flash Generation in Two-Color Injection Molding using The Rapid Heat Cycle Molding Technology (금형 급속 가열-냉각이 적용된 이색사출성형의 플래쉬 발생 예측)

  • Park, H.P.;Cha, B.S.;Rhee, B.O.
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.145-151
    • /
    • 2010
  • In case of thin-wall two-color injection molding, flashing often occurs when molten polymer flows into small gap at the parting line in mold with high pressure or under the unbalanced clamping force condition. In this study, flashing was examined in the production of thin-wall notebook case with large area when the rapid heat cycle molding (RHCM) technology was applied to the two-color injection molding. The effects of the RHCM technology on the part properties and weld-lines were compared with conventional injection molding. The flashing caused by the clamping device of the two-color injection molding machine was examined and compared by experiments and CAE analyses.

Comparison of Molding Characteristics for Multi-cavity Molding in Conventional Injection Molding and Injection Compression Molding (다수 개 빼기 성형에서 일반사출성형과 사출압축성형의 성형특성 비교)

  • Lee, Dan Bi;Nam, Yun Hyo;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.144-149
    • /
    • 2014
  • Large residual stresses are remained in the conventional injection molded products because of the high cavity pressure in packing phase during injection molding process. Conventional injection molding (CIM) invokes distribution of cavity pressure and it has a limitation to obtain product with uniform physical property. Multi-cavity conventional injection molding contains quality deviation among the cavities since flow imbalance occurs during filling phase. Injection compression molding (ICM) is adopted to overcome these limitations of CIM. In this study, molding characteristics of CIM and ICM have been investigated using multi-cavity injection mold. Researches were performed by both experiment and computer simulation through observations of birefringence for transparent resins, polycarbonate and polystyrene in CIM and ICM. As a result, low and uniform birefringence and mold shrinkage were showed in the specimens by ICM that could give a uniform cavity pressure. Deviation of physical property among the specimens in multi-cavity mold shown in CIM was significantly reduced in the specimens by ICM. Through this study it was concluded that the ICM in multi-cavity molding was valid for molding products with uniform property in an individual cavity and also reduced property deviation among the cavities.