• Title/Summary/Keyword: Convective Diffusion

Search Result 84, Processing Time 0.025 seconds

Prediction of Bypass Flow Rate through Gas Diffusion Layer in PEMFC with Serpentine Flow Channels (사행 유로를 갖는 고분자 전해질 연료전지의 기체확산층 내부에서의 우회 유동 예측)

  • Jeon, Se-Gye;Kim, Kuoung-Youn
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.293-299
    • /
    • 2012
  • The serpentine flow channel is widely used in polymer electrolyte membrane fuel cells (PEMFCs) to prevent flooding phenomena because it effectively removes liquid water in the flow channel. The pressure drop between inlet and outlet increases as compared with straight channels due to minor losses associated with the corners of the turning configurations. This results in a strong pressure gradient between adjacent channels in specific regions, where some amount of reactant gas can be delivered to catalyst layers by convection through a gas diffusion layer (GDL). The enhancement of the convective flow in the GDL, so-called bypass flow, affects fuel cell performance since the bypass flow influences the reactant transport and thus its concentration over the active area. In the present paper, for the bipolar plate design, a simple analytic model has been proposed to predict the bypass flow in the serpentine type flow channels and validated with three-dimensional numerical simulation results.

Effects of Spatial Discretization Schemes on Numerical Solutions of Viscoelastic Fluid Flows (공간차분도식이 점탄성 유체유동의 수치해에 미치는 영향)

  • Min, Tae-Gee;Yoo, Jung-Yul;Choi, Hae-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1227-1238
    • /
    • 2000
  • This study examines the effects of the discretization schemes on numerical solutions of viscoelastic fluid flows. For this purpose, a temporally evolving mixing layer, a two-dimensional vortex pair interacting with a wall, and a turbulent channel flow are selected as the test cases. We adopt a fourth-order compact scheme (COM4) for polymeric stress derivatives in the momentum equations. For convective derivatives in the constitutive equations, the first-order upwind difference scheme (UD) and artificial diffusion scheme (AD), which are commonly used in the literature, show most stable and smooth solutions even for highly extensional flows. However, the stress fields are smeared too much and the flow fields are quite different from those obtained by higher-order upwind difference schemes for the same flow parameters. Among higher-order upwind difference schemes, a third-order compact upwind difference scheme (CUD3) shows most stable and accurate solutions. Therefore, a combination of CUD3 for the convective derivatives in the constitutive equations and COM4 for the polymeric stress derivatives in the momentum equations is recommended to be used for numerical simulation of highly extensional flows.

Case Study of Variations in the Tropical Atmospheric Boundary Layer According to the Surface Conditions (지표 조건에 따른 열대 대기경계층 변화의 사례 연구)

  • Byoung-Hyuk Kwon
    • Journal of Environmental Science International
    • /
    • v.10 no.5
    • /
    • pp.337-342
    • /
    • 2001
  • The Rondonia Boundary Layer Experiment (RBLE-II) was conceived to collect data the atmospheric boundary layer over two representative surface in the Amazon region of Brazil; tropical forest and a deforested, pasture area. The present study deals with the observations of atmospheric boundary layer growth and decay. Although the atmospheric boundary layer measurements made in RBLE-II were not made simultaneously over the two different surface types, some insights can be gained from analysing and comparing with their structure. The greater depth of the nocturnal boundary layer at the forest site may be due to influence of mechanical turbulence. The pasture site is aerodynamically smoother and so the downward turbulent diffusion will be much pasture than over the forest. The development of the convective boundary layer is stronger over the pasture than over the forest. The influence of the sensible heat flux is important but may be not enough to explain the difference completely. It seems that energy advection may occur from the wet and colder(forest) to the dry and warmer area(pasture), rapidly breaking up the nocturnal inversion. Such advection can explain the abrupt growth of the convective boundary layer at the pasture site during the early morning.

  • PDF

Numerical Analysis of the Effect of a Three-Dimensional Baffle Structure with Variable Cross-Section on the Parallel Flow Field Performance of PEMFC

  • Xuejian Pei;Fayi Yan;Jian Yao;He Lu
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.333-348
    • /
    • 2023
  • In this study, a 3D model of the proton exchange membrane fuel cell is established, and a new 3D baffle structure is designed, which is combined with the parallel flow field and then optimized by numerical simulation methods. The number of baffles and the cross-sectional trapezoidal base angle are taken as the main variables, and their impacts on the performance indexes of the cathode side are analyzed. The results show that the 3D baffle can facilitate the convection and diffusion mass transfer of reactants, improve the uniformity of oxygen distribution, enhance the drainage capacity, and make the cell performance superior; however, too small angle will lead to excessive local convective mass flux, resulting in the decrease of the overall uniformity of oxygen distribution and lowering the cell performance. Among them, the optimal number of baffles and angle are 9 and 58°, respectively, which improves the net output power density by 10.8% than conventional flow field.

Effects of Electrohydrodynamic Flow and Turbulent Diffusion on Collection Efficiency of an Electrostatic Precipitator with Cavity Walls

  • Park, Seok-Joo;Park, Young-Ok;Kim, Sang-Soo;McMurry, Peter H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.97-103
    • /
    • 2001
  • The effects of the electrohydrodynamic (EHD) flow and turbulent diffusion on the collection efficiency of a model ESP composed of the plates with a cavity were studied through numerical computation. The electric field and ion space charge density were calculated by the Poisson equation of the electrical potential and the current continuity equation. The EHD flow field was solved by the continuity and momentum equations of the gas phase including the electrical body force induced by the movement of ions under the electric field. The RNG $k-{\varepsilon}$ model was used to analyze the turbulent flow. The particle concentration distribution was calculated from the convective diffusion equation of the particle phase. As the ion space charge increased, the particulate collection efficiency increased because the electrical potential increased over the entire domain in the ESP. The collection efficiency decreased and then increased, i.e. had a minimum value, as the EHD circulating flow became stronger when the electrical migration velocity of the charged particle was low. However, the collection efficiency decreased with the stronger EHD flow when the electrical migration of the particle was higher relatively. The collection efficiency of the model ESP increased as the turbulent diffusivity of the particle increased when the electrical migration velocity of the particle was low. However, the collection efficiency decreased for increasing the turbulent diffusivity when the electrical migration of the particle was higher relatively.

  • PDF

Three Dimensional Computational Study on Performance and Transport Characteristics of PEMFC by Flow Channel Patterns (유로형상 변화에 따른 고분자 전해질 연료전지의 성능 및 전달특성에 대한 3차원 수치해석적 연구)

  • Lee, Pil-Hyong;Cho, Son-Ah;Choi, Seong-Hun;Hwang, Sang-Soon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.407-410
    • /
    • 2006
  • Selection of flow channel in the separation plate of PEMFC is very important parameter to improve its performance and reduce parasite loss. Flow patterns in the channel have great influence on the transport of hydrogen and all and water generated from electrochemical reaction in diffusion layer In this study, fluid flow in flow channel with parallel and interdigitated patterns are simulated three dimensionally on full flow domain including anode and cathode electrode together. The numerical results show that the fuel cell with interdigitated flow channel represents better performance than that with parallel flow channel due to its strong convective transport across the gas diffusion layer. But the pressure drop in parallel flow channel is much more than that in nterdigitated flow channel. The effect of temperature and stoichiometric number on performance can be calculated and analyzed as well.

  • PDF

Three Dimensional Computational Study on Performance and Transport Characteristics of PEMFC by Flow Channel Patterns (유로형상 변화에 따른 고분자 전해질 연료전지(PEMFC)의 성능 및 전달특성에 대한 3차원 수치 해석적 연구)

  • Lee, Pil-Hyong;Cho, Son-An;Choi, Seong-Hun;Hwang, Sang-Soon
    • New & Renewable Energy
    • /
    • v.2 no.4 s.8
    • /
    • pp.78-85
    • /
    • 2006
  • Selection of flow channel in the separation plate of PEMFC is very important parameter to improve its performance and reduce parasite loss. Flow patterns in the channel have great influence on the transport of hydrogen and air and removal of water generated from electrochemical reaction in diffusion layer. In this study. fluid flow in flow channel with parallel and interdigitated patterns are simulated three dimensionally on full flow domain including anode and cathode channel together. The numerical results show that the fuel cell with interdigitated flow channel represents better performance than that with parallel flow channel due to its strong convective transport across the gas diffusion layer. But the pressure drop in parallel flow channel is much more than that in interdigitated flow channel. And effects of temperature and stoichiometric number on performance can be calculated and analyzed as well. Nomenclature.

  • PDF

Effect of Radiation on Laminar Film Boiling of Binary Mixtures (2성분 혼합물질의 층류 막비등에서 복사열전달의 효과)

  • Seong Hyeon-Chan;Kim Kyoung-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.942-951
    • /
    • 2004
  • This paper presents the results of a theoretical study of the effect of radiation during free convective laminar film boiling for methanol/water binary mixtures on an isothermal vertical wall at atmospheric pressure. With the well-known boundary layer theory as a basis, a theoretical model has been formulated into consideration for mass diffusion at liquid phase. The equations are numerically solved by a similarity method to investigate the effects of radiation emissivity on the surface with various parameters such as wall superheat and composition of more volatile component at liquid phase far from the wall. From the results, the distributions of the physical quantifies are investigated in both phases. New correlations are proposed to predict the heat transfer coefficient of binary mixtures. It is shown that the proposed correlations are in good agreement with numerical results and with Bromley's correlation within maximum $11\%$ errors. It is also found that as the wall superheat is increased, radiation effect becomes more important.

Application Ranges of Finite Difference Models Using Simplified Momentum Equation in Channel Flow simulation (하천흐름 해석에서 단순화된 운동방정식을 사용한 유한차분모델의 신뢰성 있는 적용 범위)

  • Choi, Gye-Woon;Ahn, Kyung-Soo;Ahn, Sang-Jin
    • Water for future
    • /
    • v.27 no.4
    • /
    • pp.123-133
    • /
    • 1994
  • The kinematic and diffusion models using simplified momentum equations of the full dynamic equation have been frequently used for numerical flow simulations, because they have several computational advantages compared to the full dynamic model. In this paper, the more generally acceptable application ranges of the kinematic and diffusion finite difference models were investigated based on three major parameters, which are channel bed slopes So, dimensionless depth increasing numbers Gw at upstream boundary and Froude numbers Fr. The applicable ranges were obtained by comparing the relative magnitudes of the local acceleration, convective acceleration, pressure, gravity and friction terms in the full dynamic equation. In the simulations, a Courant number of 0.5 was used and the channel bed slopes were changed from 0.00001 to 0.05. Also, Froude numbers of 0.1, 0.5 and 0.9 were employed. In this paper, it is indicated that the applicable ranges of kinematic models are increased with increasing of Froude numbers. However, the applicable ranges of diffusion models are decreased with increasing of Froude numbers. Finally, 9 figures were proposed as a guideline in the application of kinematic and diffusion finite difference models based upon the allowable deviation compared to the full dynamic model. With applying the proposed criteria, it is expected that the flow simulations in the channels, streams or rivers are more efficiently achieved.

  • PDF

Generic studies on thermo-solutal convection of mercurous chloride system of ${Hg_2}{Cl_2}$ and Ne during physical vapor transport

  • Choi, Jeong-Gil;Lee, Kyong-Hwan;Kim, Geug-Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.1
    • /
    • pp.39-47
    • /
    • 2009
  • The effects of thermo-solutal convection on mercurous chloride system of ${Hg_2}{Cl_2}$, and Ne during physical vapor transport are numerically investigated for further understanding and insight into essence of transport phenomena, For $10\;K{\le}{\Delta}T{\le}30\;K$, the growth rate slowly increases and, then is decreased gradually until ${\Delta}T$=50 K, The occurrence of this critical point near at ${\Delta}T$=30 K is likely to be due to the effects of thermo-physical properties stronger than the temperature gradient corresponding to driving force for thermal convection. For the range of $10\;Torr{\le}P_B{\le}300\;Torr$, the rate is second order-exponentially decayed with partial pressures of component B, $P_B$. For the range of $5{\le}M_B{\le}200$, the rate is second order-exponentially decayed with a function of molecular weight of component B, $M_B$. Like the case of a partial pressure of component B, the effects of a molecular weight arc: reflected through the binary diffusivity coefficients, which are intimately related with suppressing the convection flow inside the growth enclosure, i,e., transition from convection to diffusion-dominant flow mode as the molecular weight of B increases. The convective mode is near at a ground level, i,e., on earth (1 $g_0$), and the convection is switched to the diffusion mode for $0.1\;g_0{\le}g{\le}10^{-2}g_0$, whereas the diffusion region ranges from $10^{-2}g_0$ up to $10^{-5}g_0$.