• 제목/요약/키워드: Convection Heat Transfer Coefficient

검색결과 192건 처리시간 0.025초

평판 핀에서의 강제대류 열전달에 미치는 복사효과 (Radiative Effect on the Conjugated Forced Convection-Conduction Heat Transfer in a Plate Fin)

  • 손병진;민묘식;최상경
    • 대한기계학회논문집
    • /
    • 제14권2호
    • /
    • pp.453-462
    • /
    • 1990
  • The interaction of forced convection-conduction with thermal radiation in laminar boundary layer over a plate fin is studied numerically. The analysis is based on complete solution whereby the heat conduction equation for the fin is solved simultaneously with the conservation equations for mass, momentum and energy in the fluid boundary layer adjacent to the fin. The fluid is a gray medium and diffusion(Rosseland) approximation is used to describe the radiative heat flux in the energy equation. The resulting boundary value problem are convection-conduction parameter N$_{c}$ and radiation-conduction parameter m, Prandtl number Pr. Numerical results are presented for gases with the Prandtl numbers of 0.7 & 5 with values of N$_{c}$ and M ranging from 0 to 10 respectively. The object of this study is to provide the first results on forced convection-radiation interaction in boundary layer flow over a semi-infinite flay plate which can be used for comparisons with future studies that will consider a more accurate expression for the radiative heat flux. The agreement of the results from the complete solution presented by E. M. Sparrow and those from this paper for the special case of M=0 is good. The overall rate of heat transfer from the fin considering radiative effect is higher than that from the fin neglecting radiative effect. The local heat transfer coefficient with radiative effect is higher than that without radiative effect. In the direction from tip to base, those coefficients decrease at first, attain minimum, and then increase. The larger values of N$_{c}$ M, Pr give rise to larger fin temperature variations and the fin temperature without radiative effect is always higher than that with radiative effect.

LPG 액정분사 방식의 대형 엔진용 피스톤의 온도분포와 열응력 해석 (Temperature Distribution and Thermal Stress Analyses of a Large LPLi Engine Piston)

  • 임문혁;손재율;이부윤
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권3호
    • /
    • pp.538-550
    • /
    • 2004
  • The convection heat transfer coefficients on the top surface of a large liquid petroleum liquid injection(LPLi) engine piston with the oil gallery are analyzed by solving an inverse thermal conduction problem. The heat transfer coefficients are numerically found so that the difference between analyzed temperatures from the finite element method and measured temperatures is minimized. Using the resulting heat transfer coefficients as the boundary condition, temperature of a large LPLi engine piston is analyzed. With varying cooling water temperature, temperature, stress, and thermal expansion of the piston are analyzed and evaluated.

상변화 물질을 이용한 에너지의 저장에 관한 연구 - 핀이 부착된 열싸이폰의 이용에 관하여 - (Thermal Energy Storage in Phase Change Material - by Means of Finned Thermosyphon -)

  • 김권진;유재석;김기현
    • 태양에너지
    • /
    • 제11권1호
    • /
    • pp.69-77
    • /
    • 1991
  • 파라핀 왁스에 열에너지를 저장하기 위해 열전달 기구로 원판형 핀이 달린 열싸이폰을 사용하였다. 실험은 4, 6, 8개의 핀에 대해 수행되었으며 각각의 경우 왁스의 초기온도와 주입열량을 변화시키면서 실험을 반복하였다. 실험을 통하여 특히 잠열 축열계의 전열경로의 주요지점에서의 열전달 특성을 규명하고자 하였으며 주요 결론은 다음과 같다. (1) 열싸이폰의 열관류율과 총합열관류율은 핀의 수가 증가함에 따라 커지나 핀과 왁스사이의 열전달계수는 감소하였다. (2) 핀에 의해 열전달이 촉진됨으로서 핀이 없는 열싸이폰에서 일어나는 dry-out 현상이 제거되었다. (3) 수평형의 핀은 왁스의 큰 규모의 대류를 억제하며 핀의 수가 증가함에 따라 핀 사이에서의 국소대류도 더욱 억제되었다.

  • PDF

초기재령 콘크리트의 외기대류계수에 관한 연구 (A Study on the Convection Heat Transfer Coefficient in Concrete at Early Ages)

  • 김진근;전상은;양은익;송영철;방기성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.151-156
    • /
    • 1997
  • The setting and hardening of concrete is accompanied by nonlinear temperature distribution caused by developing heat of cement hydration. expecially at early ages, nonlinear temperature distribution has a large influence n the crack evaluation. So the need to predict the exact temperature history in concrete has led to the examination thermal properties. In this study, the convection heat transfer coefficient is experimentally investigated which is one of the thermal properties in concrete. Furthermore, the result of the experiment is compared with those of analysis by the program which is developed in KAIST. As a result of comparison, the analytical results are in good approximation with experimental data.

  • PDF

KURT 내 열전달계수 결정에 관한 실험적 연구 (Experimental Study on the Determination of Heat Transfer Coefficient for the KURT)

  • 윤찬훈;권상기;김진
    • 터널과지하공간
    • /
    • 제19권6호
    • /
    • pp.507-516
    • /
    • 2009
  • 고준위 방사성 폐기물 처분장의 경우 폐기물의 방사성 붕괴에 의해 발열 현상이 나타나게 되며, 암반을 통한 열전달에 의해 처분장 주변 환경이 변화됨으로써 처분장의 안전성에 영향을 미칠 수 있다. 그러므로 처분장의 안전성 확보를 위해선 적절한 처분장 내 환기장치가 필요하다. 적절한 환기시스템의 구축을 위해서는 암반 열물성치와 처분장 내 열전달계수의 산정을 통한 컴퓨터 시뮬레이션 연구가 핵심이라고 할 수 있다. 이에 본 연구에서는 KAERI Underground Research Tunnel(이하 KURT) 내부 환경 인자(건습구온도, 암반표면온도, 대기압)들의 측정을 통해 열전달계수를 산정하는 것에 초점을 맞추었다. KURT 내부 우측 연구모듈의 막장 벽면에 길이 2 m, 용량 5 kw의 히터가 $90^{\circ}C$로 암반 내부를 가열하고 있는 히터구간의 열전달계수 산정 결과, 태양의 위치에 따른 처분장 외부 대기의 온도변화에 의해 열전달계수의 수치 변화가 최대 7.9% 발생하였으며, 평균 열전달계수 h는 약 4.533 W/$m^2{\cdot}K$의 수치를 나타내었다.

계면활성제를 이용한 수평관군 흡수기의 전열촉진 (Heat Transfer Enhancement with Surfactants in Horizontal Bundle Tubes on Absorber)

  • 설원실;권오경;문춘근;윤정인
    • 대한기계학회논문집B
    • /
    • 제24권8호
    • /
    • pp.1097-1103
    • /
    • 2000
  • This research was concerned with the enhancement of heat transfer by surfactant added to the aqueous solution of LiBr. Different horizontal tubes were tested with and without an additive of normal octyl alcohol. The test tubes were a bare tube, floral tube and hydrophilic tube. The additive mass concentration was about 0.05${\sim}$5.5%. The heat transfer coefficient was measured as a function of solution flow rate for the range of 0.01${\sim}$0.034 kg/ms. The experimental results were compared with cases without surfactant. The enhancement of heat transfer by Marangoni convection effect generated by the addition of the surfactant is observed in each test tube. The increase of heat transfer coefficient by surfactant addition is about 35${\sim}$90% for bare tube, 40${\sim}$70% for the floral tube, 30${\sim}$50% for the hydrophilic tube and was higher for the cases with smaller a little solution flow rates.

열펌프-잠열축열 온돌 시스템 연구 (A Study on the Heat Pump-Latent Heat Storage Type)

  • 송현갑;박문수
    • Journal of Biosystems Engineering
    • /
    • 제26권4호
    • /
    • pp.385-390
    • /
    • 2001
  • The Ondol system using both air-to-water heat pump and PCM(Phase Change Material) was constructed, and the effects of ambient air temperature on COP(Coefficient of Performance) of heat pump, the amount of heat supplied to the Ondol in the heating process, the heat storage in the PCM and the variation of Ondol room temperature were analyzed. The results from this study could be summarized as follows: 1. The COP of the heat pump (3 PS) was in proportion to the ambient air temperature. 2. When the ambient air temperature was varied between -10$^{\circ}C$ and -7$^{\circ}C$, the air temperature in the Ondol room was maintained between 16$^{\circ}C$ and 22$^{\circ}C$. As the results, it was certified that the heat pump-latent heat storage type Ondol system could be a comfortable residential heating system in the winter. 3. The maximum radiation and convection heat transfer from Ondol surface was 206.2 kJ/㎥hr and 82.6 kJ/㎥hr respectively. As the results, it could be confirmed that the radiation was major heat transfer mechanism for the Ondol room heating.

  • PDF

석유 팬 히터의 연소실 주변 열전달 특성 (Heat transfer characteristics around a circular combustion chamber of kerosene fan heater)

  • 김장권
    • 대한기계학회논문집B
    • /
    • 제22권4호
    • /
    • pp.551-561
    • /
    • 1998
  • This paper was studied to understand the characteristics of heat transfer coefficients and surface temperature distributions around a circular combustion chamber within the heat-intercept duct of kerosene fan heater. The experiment was carried out in the heat-intercept duct of kerosene fan heater attached to the blow-down-type subsonic wind tunnel with a test section of 240 mm * 240 mm * 1200 mm. The purpose of this paper was to obtain the basic data related with normal combustion for new design from conventional kerosene fan heater, and to investigate the effect of surface temperature, local and mean heat transfer coefficients versus flow-rate of convection axial fan according to the variations of heat release conditions from kerosene fan heater during normal combustion. Consequently it was found that (i) the revolution of convection axial fan during combustion had a smaller value than that of non-combustion because of the thermal resistance due to the high temperature in the heat-intercept duct, (ii) the pressure ratio P$_{2}$/P$_{1}$ had a comparatively constant value of 0.844 according to the revolution increase of turbo fan and the heating performance of kerosene fan heater had a range of 1,494 ~ 3,852 kcal/hr, (iii) the local heat transfer coefficient around a circular combustion chamber had a comparatively larger scale in the range of 315 deg. < .theta. < 45 deg. than that in the range of 90 deg. < .theta. < 270 deg. as a result of heat transfer difference between front and back of a circular combustion chamber, and (iv) the mean heat transfer coefficient around a circular combustion chamber increased linearly like a H$_{m}$=95.196Q+104.019 in condition of high heat release according to the increase of flow-rate of axial fan.n.

동심이중관내 나노유체의 자연대류열전달에 관한 수치적 연구 (NUMERICAL STUDY ON NATURAL CONVECTION HEAT TRANSFER IN A NANOFLUID FILLED CONCENTRIC ANNULUS)

  • 최훈기;박재훈;유근종
    • 한국전산유체공학회지
    • /
    • 제21권3호
    • /
    • pp.1-7
    • /
    • 2016
  • In the present study, the homogeneous model is used to simulate the natural convection heat transfer of the CuO-water nanofluid in a concentric annular enclosure. Simulations have been carried while the Rayleigh number ranges from $10^3$ to $10^6$, solid volume fraction ranges from 0.01 to 0.04 and the radius ratio varies between 0.1 and 0.7. Results are presented in the form of streamlines, isotherm patterns and averaged Nusselt numbers for different values of solid volume fraction, radius ratio of the annulus and Rayleigh numbers. The results show that by decreasing the radius ratio and/or increasing the Rayleigh number, the averaged Nusselt number increases. Also the heat transfer rate increases as increased solid volume fractions.

Heat Transfer Characteristics of Liquid-Solid Suspension Flow in a Horizontal Pipe

  • Ku, Jae-Hyun;Cho, Hyun-Ho;Koo, Jeong-Hwan;Yoon, Suk-Goo;Lee, Jae-Keun
    • Journal of Mechanical Science and Technology
    • /
    • 제14권10호
    • /
    • pp.1159-1167
    • /
    • 2000
  • Particles in liquid-solid suspension flow might enhance or suppress the rate of heat transfer and turbulence depending on their size and concentration. The heat transfer characteristics of liquid-solid suspension in turbulent flow are not well understood due to the complexibility of interaction between solid particles and turbulence of the carrier fluid. In this study, the heat transfer coefficients of liquid-solid mixtures are investigated using a double pipe heat exchanger with suspension flows in the inner pipe. Experiments are carried out using spherical fly ash particles with mass median diameter ranging from 4 to $78{\mu}m$. The volume concentration of solids in the slurry ranged from 0 to 50% and Reynolds number ranged from 4,000 to 11,000. The heat transfer coefficient of liquid-solid suspension to water flow is found to increase with decreasing particle diameter. The heat transfer coefficient increases with particle volume concentration exhibiting the highest heat transfer enhancement at the 3% solid volume concentration and then gradually decreases. A correlation for heat transfer to liquid-solid flows in a horizontal pipe is presented.

  • PDF