• Title/Summary/Keyword: Convection Gas

Search Result 197, Processing Time 0.029 seconds

Comparison of Characteristics of Steady State Low Current Arcs In Dual Flow Nozzles by Simplified Engineering Techniques (간단한 엔지니어링기법에 의한 이중유동형 노즐내의 저전류 정적 아크의 특성 비교)

  • Song, K.D.;Shin, Y.J.;Park, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.627-630
    • /
    • 1993
  • The arc characteristics have influences on the current interruption phenomena in the regimes of low current as well as high current. It is very important to understand the arc characteristics for the initial design of a circuit breaker. This article describes the theoretical analysis of the arc characteristics by means of arc energy integral method when convection dominated low current arcs are produced in the dual-nozzle air and $SF_6$ gas flows of a model interrupter. The arc radius, average electric field strength and arc voltage have been investigated at the current range of 60 to 230 A and at the upstream pressure of 0.6 MPa in both air and SF6 gas. The results have been compared to show the difference of both gases and the trends similar to those of other investigations.

  • PDF

An effect of Radiation Heat Transfer on the Thermal Dissipation from the Electronic Chip in an Enclosure (밀폐공간에 놓인 전자 칩의 열발산에 복사 열전달이 미치는 영향)

  • Choi, In-Su
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.4
    • /
    • pp.179-186
    • /
    • 2009
  • Electronic components in an enclosure have been investigated to prevent undesired thermal problems. The electronic devices, such as ECUs of automotive engines, are operated under the contaminated environments, so that they rely on the passive cooling without any fluid-driving methods. Therefore the radiation heat dissipation plays more important role than the conduction and convection heat transfer. Hence their combined heat dissipation phenomena have been simulated by a numerical model to reveal the effects of supplied heat flux, emissivity of material, geometry of enclosure, charging gas and pressure. The result showed that the radiation had a significant effect on the heat dissipation of module in an enclosure, and some space above the module should be reserved to prevent its thermal problem. In addition, the higher thermal conductivity and pressure of gas in an enclosure could be necessary to improve the thermal dissipation from the electronic devices.

  • PDF

The heat transfer and pressure drop characteristics of $CO_2$ during supercritical region in a horizontal tube (초임계 영역에서 수평관내 $CO_2$ 열전달과 압력강하)

  • 이동건;오후규;김영률;손창효
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.500-508
    • /
    • 2004
  • The heat transfer coefficients during gas cooling process of carbon dioxide in a horizontal tube were investigated. The experiments are conducted without oil in the refrigerant loop. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater, and a gas cooler(test section). The water loop consists of a variable-speed pump, an isothermal tank, and a flow meter. The gas cooler is a counterflow heat exchanger by cooled water flowing in the annulus. The $CO_2$ flows in the horizontal stainless steel tube. which is 9.53mm in O.D. and 7.75mm in I.D. The gas cooler is 6 [m] in length. which is divided into 12 subsections, respectively. The experimental conditions considered in the study are following range of variables : refrigerant temperature is between 20 and $100^{\circ}C$. mass fluxes ranged from 200 to 400kg/($m^2$.s), average pressure varied from 7.5 to 10.0MPa. The main results were summarized as follows : The friction factors of $CO_2$ in the gas cooler show a relatively good agreement with those predicted by Blasius' correlation. The local heat transfer coefficient in the gas cooler has compared with most of correlations, which are the famous ones for forced convection heat transfer of turbulent flow. The results show that the local heat transfer coefficient of gas cooler agrees well with the correlation by Bringer-Smith except that at the region near pseudo critical temperature. while that at the near pseudo critical temperature is higher than the correlation.

Experiments on Sedimentation of Particles in a Water Pool with Gas Inflow

  • Kim, Eunho;Jung, Woo Hyun;Park, Jin Ho;Park, Hyun Sun;Moriyama, Kiyofumi
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.457-469
    • /
    • 2016
  • During the late phase of severe accidents of light water reactors, a porous debris bed is expected to develop on the bottom of the flooded reactor cavity after breakup of the melt in water. The geometrical configuration, i.e., internal and external characteristics, of the debris bed is significant for the adequate assessment of the coolability of the relocated corium. The internal structure of a debris bed was investigated experimentally using the DAVINCI (Debris bed research Apparatus for Validation of the bubble-Induced Natural Convection effect Issue) test facility. Particle sedimentation under the influence of a two-phase natural convection flow due to the decay heat in the debris bed was simulated by dropping various sizes of particles into a water vessel with air bubble injection from the bottom. Settled particles were collected and sieved to obtain the particle mass, size distribution in the radial and axial positions, and the bed porosity and permeability. The experimental results showed that the center part of the particle bed tended to have larger particles than the peripheral area. For the axial distribution, the lower layer had a higher fraction of larger particles. As the sedimentation progressed, the size distribution in the upper layers can shift to larger sizes because of the higher vapor generation rate and stronger flow intensity.

Numerical study of the flow and heat transfer characteristics in a scale model of the vessel cooling system for the HTTR

  • Tomasz Kwiatkowski;Michal Jedrzejczyk;Afaque Shams
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1310-1319
    • /
    • 2024
  • The reactor cavity cooling system (RCCS) is a passive reactor safety system commonly present in the designs of High-Temperature Gas-cooled Reactors (HTGR) that removes heat from the reactor pressure vessel by means of natural convection and radiation. It is one of the factors responsible for ensuring that the reactor does not melt down under any plausible accident scenario. For the simulation of accident scenarios, which are transient phenomena unfolding over a span of up to several days, intermediate fidelity methods and system codes must be employed to limit the models' execution time. These models can quantify radiation heat transfer well, but heat transfer caused by natural convection must be quantified with the use of correlations for the heat transfer coefficient. It is difficult to obtain reliable correlations for HTGR RCCS heat transfer coefficients experimentally due to such a system's size. They could, however, be obtained from high-fidelity steady-state simulations of RCCSs. The Rayleigh number in RCCSs is too high for using a Direct Numerical Simulation (DNS) technique; thus, a Reynolds-Averaged Navier-Stokes (RANS) approach must be employed. There are many RANS models, each performing best under different geometry and fluid flow conditions. To find the most suitable one for simulating an RCCS, the RANS models need to be validated. This work benchmarks various RANS models against three experiments performed on the HTTR RCCS Mockup by the Japanese Atomic Energy Agency (JAEA) in 1993. This facility is a 1/6 scale model of a vessel cooling system (VCS) for the High Temperature Engineering Test Reactor (HTTR), which is operated by JAEA. Multiple RANS models were evaluated on a simplified 2d-axisymmetric geometry. They were found to reproduce the experimental temperature profiles with errors of up to 22% for the lowest temperature benchmark and 15% for the higher temperature benchmarks. The results highlight that the pragmatic turbulence models need to be validated for high Rayleigh natural convection-driven flows and improved accordingly, more publicly available experimental data of RCCS resembling experiments is needed and indicate that a 2d-axisymmetric geometry approximation is likely insufficient to capture all the relevant phenomena in RCCS simulations.

Numerical Simulation of Vertical Wall fires II. Propane Fire (수직벽화재의 수치 시뮬레이션 II. 프로판 화재)

  • Park, Woe-Chul;Trouve, Arnaud
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.188-193
    • /
    • 2008
  • Numerical simulation was carried out for a propane fire of mass transfer rate 3g/m^2-s$ on a 1m high vertical wall. The objectives of this study are to confirm the outcomes of evaluation of the simulator through simulation of natural convection, and to compare the results of the wall fire with those of previous studies. It was confirmed that the simulated boundary layer was laminar at C_s=0.2$ while it was turbulent at C_s=0.1$. The z direction velocity showed lack of turbulent mixing as seen in the natural convection case, and the profiles of temperature and velocities were in relatively good agreement with those of experiment and previous simulation. It was found that the air entrainment into the boundary layer was well predicted.

Prediction of Penetration and Heat Affected Zone by Using Finite Element Method in $CO_2$ Arc Welding (유한 요소법을 이용한 $CO_2$아아크 용접부의 용입깊이와 열영향부 크기 예측)

  • 이정익;박일철;박기영;엄기원
    • Journal of Welding and Joining
    • /
    • v.10 no.4
    • /
    • pp.222-229
    • /
    • 1992
  • A prediction of penetration and heat affected zone by using Finite Element Method in CO$_{2}$ Arc Welding has been discussed this paper. The temperature distribution of a base metal produced by the CO$_{2}$ arc welding processing is analyzed by using a three dimensional finite element model. The common finite element program ANSYS 4.4A was employed to obtain the numerical results. Temperature dependent material properties, effect of latent heat, and the convective boundary conditions are included in the model. Numerically predicted sizes of the penetration and the heat affected zone are compared with the experimentally observed values. As a result, there was a slight difference between numerical analysis values and experimentally observed values. For in the case of heat affected zone, it was not considered a precise forced convective coefficient value, and in the case of penetration, it was not, considered a arc force.

  • PDF

A Study on the Leakage Analysis of Scroll Compressor with Thermal Deformation Considered (열변형을 고려한 스크롤 압축기의 누설 해석에 관한 연구)

  • Gu, In-Hoe;Park, Jin-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2428-2437
    • /
    • 2000
  • In general, it is known that the portion of leakage loss is more than 20 % of total loss in scroll compressor. So far many studies have been done to improve the leakage problem and volumetric efficiency. In order to do this it is necessary that the leakage is exactly evaluated for conventional scroll model. Almost all studies that have been done were assumed that the clearance remains constant while operating. But in actual operating conditions, scroll wrap is deformed due to elevated refrigerant gas temperature. And this makes the leakage clearance change, so the leakage mass flow and the volumetric efficiency are also changed. In this study we assumed the steady state operating condition and obtain the average temperature and convection heat transfer coefficient in terms of involute angle. With these results, using finite element method we analyzed the heat transfer of scroll wrap, then did thermal deformation analysis. Then we obtain the leakage clearance and do the leakage and volumetric efficiency analysis. Compared with undeformed feature, we examine the effect of the thermal deformation on the leakage. The results say that the leakage mass flow for the case of considering thermal deformation is less than that for the unconsidered one, and this means that the leakage clearance is reduced due to thermal deformation.

The Discharge Performance Optimization of a Forced Convection Type PCM Refrigeration Module Used in a Refrigeration Truck (냉동트럭용 강제대류방식 PCM 냉동모듈의 방냉성능 최적화에 관한 연구)

  • Lel, Xu;Kim, Wonuk;Lee, Sang-Ryoul;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.11
    • /
    • pp.624-630
    • /
    • 2013
  • A truck refrigeration system using phase change material (PCM) is expected to have a lower noise level, reduced energy cost, and much lower local greenhouse gas emission. Recently, a forced convection type PCM refrigeration module has been developed. As the operation time increases, the PCM around the air inlet melts, because of a large temperature difference between the PCM and air. Therefore, the latent heat transfer area decreases and the heat transfer rate of the module decreases even though there is a lot of PCM which does not melt around the air outlet. A computational fluid dynamic modeling of the PCM refrigeration module was developed and validated by the experiment. Using the CFD, the design parameters, such as the mass flow rate of the air and roughness of the slab, were investigated to improve the heat transfer inhomogeneity. As a result, the adoption of partial roughness on the slabs improved the heat transfer inhomogeneity and reduced a fan power.

Design of Adiabatic Demagnetization Refrigerator for Hydrogen Re-Liquefaction (수소 재액화용 단열 탈자 냉동기의 설계)

  • Park, Ji-Ho;Kim, Young-Kwon;Jeong, Sang-Kwon;Kim, Seok-Ho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.53-59
    • /
    • 2012
  • Adiabatic demagnetization refrigerator (ADR) for hydrogen re-liquefaction operating between 24 K and 20 K has been designed. $Dy_{0.9}Gd_{0.1}Ni_2$, whose Curie temperature is 24 K, is selected as a magnetic refrigerant. The magnetic refrigerant powder is sintered with oxygen-free high purity copper (OFHC) powder to enhance its effective thermal conductivity as well as to achieve relatively high frequency. A perforated plate heat exchanger (PPHE) operated with forced convection is utilized as a heat switch. The forced convection heat switch is expected to have fast response relative to a conventional gas-gap heat switch. A conduction-cooled high Tc superconducting (HTS) magnet is employed to apply external magnetic field variation on a magnetic refrigerant. $2^{nd}$ generation GdBCO coated conductor HTS tape with Kapton$^{(R)}$ insulation (SUNAM Inc.) will be utilized for the HTS magnet. The magnetization and demagnetization processes are to be achieved by the AC operation of the HTS magnet. The designed magnetic field and target ramp rate of the HTS magnet are over 4 T with 180 A and 0.4 T/s, respectively. AC loss distribution on HTS magnet is theoretically estimated.