• Title/Summary/Keyword: ConvLSTM AutoEncoder

Search Result 1, Processing Time 0.019 seconds

Hot Place Detection Based on ConvLSTM AutoEncoder Using Foot Traffic Data (유동인구를 활용한 ConvLSTM AutoEncoder 기반 핫플레이스 탐지)

  • Ju-Young Lee;Heon-Jin Park
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.97-107
    • /
    • 2023
  • Small business owners are relatively likely to be alienated from various benefits caused by the change to a big data/AI-based society. To support them, we would like to detect a hot place based on the floating population to support small business owners' decision-making in the start-up area. Through various studies, it is known that the population size of the region has an important effect on the sales of small business owners. In this study, inland regions were extracted from the Incheon floating population data from January 2019 to June 2022. the Data is consisted of a grid of 50m intervals, central coordinates and the population for each grid are presented, made image structure through imputation to maintain spatial information. Spatial outliers were removed and imputated using LOF and GAM, and temporal outliers were removed and imputated through LOESS. We used ConvLSTM which can take both temporal and spatial characteristics into account as a predictive model, and used AutoEncoder structure, which performs outliers detection based on reconstruction error to define an area with high MAPE as a hot place.