• Title/Summary/Keyword: Controlled models

Search Result 579, Processing Time 0.03 seconds

Hierarchical Simulation for Real-time Cloth Animation and LOD control (실시간 옷감 애니메이션과 LOD 제어를 위한 계층적 시뮬레이션)

  • Kang, Young-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.3
    • /
    • pp.479-485
    • /
    • 2007
  • In this paper, a hierarchical simulation with an approximate implicit method is proposed in order to efficiently and plausibly animate mass-spring based cloth models. The proposed hierarchical simulation method can generate realistic motion of extremely fine mesh in interactive rate. The proposed technique employs a fast and stable simulation method which approximates the implicit integration. Although the approximate method is efficient, it is extremely inaccurate and shows excessively damped behavior. The hierarchical simulation technique proposed in this paper constructs multi-level mesh structure in order to represent the realistic appearance of cloth model and performs simulation on each level of the mesh with constraints that enforce some of the mass-points of current level to follow the movement of the previous level. This hierarchical method efficiently generates a plausible movement of a cloth model composed of large number of mass points. Moreover, this hierarchical method enables us to generate realistic wrinkles on the cloth, and the wrinkle pattern on the cloth model can be easily controlled because we can specify different contraction resistance force of springs according to their hierarchical level.

[ $\b{S}afety\;\b{A}nd\;\b{E}fficacy$ ] of $\b{K}orean$ red ginseng Intervention (SAEKI) Trial: Rationale, Design, and Expected Findings

  • Sievenpiper John L;Buono Marco Di;Stavro P. Mark;Jenkins Alexandra L;Nam Ki Yeul;Choi Melody;Naeem Asima;Leiter Lawrence A;Sung Mi-Kyung;Vuksan Vladimir
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.424-455
    • /
    • 2002
  • Diabetes mellitus is reaching epidemic proportions worldwide. The insufficiency of medication to cope with this burden has coincided with a dramatic rise in the prevalence of use of complementary and alternative therapies, especially herbal treatments. This surge in demand presents a challenge to prove the safety and efficacy of these treatments in diabetes. Korean red ginseng (steam treated Panax ginseng C.A. Meyer) is a strong candidate to succeed. It has been shown to possess a multitude of hypoglycemic effects and improve metabolic disturbances related to diabetes in in vitro and animal models. Data in humans is also emerging to support these benefits. Whether these results can be replicated in a rigorous clinical testing program is unclear. We therefore investigated the antidiabetic effects of Korean red ginseng in a series of 2 acute and 1 longterm randomized, double-blinded, placebo-controlled clinical trials. This paper provides the rationale for this program of study, expanding on the problem of diabetes, its management, and the possible role for Korean red ginseng. It then describes the design and expected findings.

  • PDF

The Effects of Marine Training on Physical -Focused to Teaching Models of Aquatic Training Curricula- (해양훈련이 신체에 미치는 영향 - 해양훈련교과목의 수업모형을 중심으로 -)

  • KWON, Hyeg-Dong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.16 no.2
    • /
    • pp.156-162
    • /
    • 2004
  • This study aimed to know the effects of three marine training items, swimming, rowing and yachting on pulse, lung capacity and weight. The experiment subjects were composed of ten each item and were tested for six days. The experiment groups were strictly controlled in eating time, food amount, sleeping time and training intensity. The level of training intensity was 70~80% of maximal pulse rate. In the training intensity of each item the speed was decided after examination in advance, and the trainees kept the speed during training. The contents of training were made up through enough examination. The conclusions were as follows. 1. The effect on pulse in average value showed the decrease of 1.80round/min swimming, 1.51round/min rowing, and 0.11round/min yachting, but it was not admitted as significant difference. And in average value, swimming showed the decrease of 0.26round/m than rowing and 1.69round/m than yachting. 2. The effect on lung capacity showed the increase of 66.66cc swimming, 42.97cc rowing, and 4.22cc yachting, but there was no significant difference. And the average value of swimming showed the increase of 23.66cc than rowing, and 62.44cc than yachting. 3. The effect on weight showed decrease of 3.45g in swimming, 3.24g in rowing, and 2.07g in yachting. Swimming and rowing proved to have significant difference (p<.05). And in average value, swimming showed the decrease of 1.175g than rowing, and 1.38g than yachting. On the whole, in all experiment items, pulse, lung capacity and weight, the change was in the order of swimming, rowing and yachting after experiments.

MULTI-SCALE MODELING AND ANALYSIS OF CONVECTIVE BOILING: TOWARDS THE PREDICTION OF CHF IN ROD BUNDLES

  • Niceno, B.;Sato, Y.;Badillo, A.;Andreani, M.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.620-635
    • /
    • 2010
  • In this paper we describe current activities on the project Multi-Scale Modeling and Analysis of convective boiling (MSMA), conducted jointly by the Paul Scherrer Institute (PSI) and the Swiss Nuclear Utilities (Swissnuclear). The long-term aim of the MSMA project is to formulate improved closure laws for Computational Fluid Dynamics (CFD) simulations for prediction of convective boiling and eventually of the Critical Heat Flux (CHF). As boiling is controlled by the competition of numerous phenomena at various length and time scales, a multi-scale approach is employed to tackle the problem at different scales. In the MSMA project, the scales on which we focus range from the CFD scale (macro-scale), bubble size scale (meso-scale), liquid micro-layer and triple interline scale (micro-scale), and molecular scale (nano-scale). The current focus of the project is on micro- and meso-scales modeling. The numerical framework comprises a highly efficient, parallel DNS solver, the PSI-BOIL code. The code has incorporated an Immersed Boundary Method (IBM) to tackle complex geometries. For simulation of meso-scales (bubbles), we use the Constrained Interpolation Profile method: Conservative Semi-Lagrangian $2^{nd}$ order (CIP-CSL2). The phase change is described either by applying conventional jump conditions at the interface, or by using the Phase Field (PF) approach. In this work, we present selected results for flows in complex geometry using the IBM, selected bubbly flow simulations using the CIP-CSL2 method and results for phase change using the PF approach. In the subsequent stage of the project, the importance of effects of nano-scale processes on the global boiling heat transfer will be evaluated. To validate the models, more experimental information will be needed in the future, so it is expected that the MSMA project will become the seed for a long-term, combined theoretical and experimental program.

Modeling of the Nitrate Adsorption Kinetics onto $ZnCl_2$ Treated Granular Activated Carbon (염화아연으로 표면개질된 입상활성탄의 질산성질소 흡착속도의 모델링 연구)

  • Ji, Min-Kyu;Jung, Woo-Sik;Bhatnagar, Amit;Jeon, Byong-Hun
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.3
    • /
    • pp.21-26
    • /
    • 2008
  • Nitrate adsorption from aqueous solutions onto zinc chloride ($ZnCl_2$) treated coconut Granular Activated Carbon (GAC) was studied in a batch mode at two different initial nitrate concentrations (25 and 50 mg/L). The rate of nitrate uptake on prepared media was fast in the beginning, and 50% of adsorption was occurred within 10 min. The adsorption equilibrium was achieved within one hour. The mechanism of adsorption of nitrate on $ZnCl_2$ treated coconut GAC was investigated using four simplified kinetic models : the rate parameters were calculated for each model. The kinetic analysis indicated that pseudo-second-order kinetic with pore-diffusion-controlled was the best correlation of the experimental kinetic data in the present adsorption study.

Simulation of Sustainable Co-evolving Predator-Prey System Controlled by Neural Network

  • Lee, Taewoo;Kim, Sookyun;Shim, Yoonsik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.9
    • /
    • pp.27-35
    • /
    • 2021
  • Artificial life is used in various fields of applied science by evaluating natural life-related systems, their processes, and evolution. Research has been actively conducted to evolve physical body design and behavioral control strategies for the dynamic activities of these artificial life forms. However, since co-evolution of shapes and neural networks is difficult, artificial life with optimized movements has only one movement in one form and most do not consider the environmental conditions around it. In this paper, artificial life that co-evolve bodies and neural networks using predator-prey models have environmental adaptive movements. The predator-prey hierarchy is then extended to the top-level predator, medium predator, prey three stages to determine the stability of the simulation according to initial population density and correlate between body evolution and population dynamics.

Progress in human ovarian rejuvenation: Current platelet-rich plasma and condensed cytokine research activity by scope and international origin

  • Sills, E. Scott;Wood, Samuel H.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.4
    • /
    • pp.311-315
    • /
    • 2021
  • Objective: As clinicians and patients await consensus on intraovarian platelet-rich plasma (PRP) treatment, this project evaluated contemporary research trends in the literature. Methods: A PubMed/NLM search aggregated all ovarian PRP-related publications (n=54) to evaluate their scope, abstract utility, submission-to-publication interval, journal selected, article processing charge (APC), free reader access to full-text manuscripts, number and nationality of authors, and inclusion of international collaborators. The NIH Clinical Trials database was also audited. Results: Published output on intraovarian PRP has increased consistently since 2016, especially among investigators in Greece, Iran, USA, and Turkey. Between 2013 and 2021, 42 articles met the relevancy criteria, of which 40.5% reported clinical studies, small series, or case reports, 33% described experimental animal models, and 23.8% were opinion/review papers. Only two works included a placebo control group. The submission-to-publication interval (mean±standard deviation) was 130±96 days, there were 5.9±3.2 authors per project, and journals invoiced US $1,613±1,466 (range, $0-$3,860) for APCs. Conclusion: There was no correlation between APC and time to publish (Pearson's r=-0.01). Abstract content was inconsistent; sample size and patient age were often missing, yet free full-text "open access" was available for most publications (59.5%). The NIH Clinical Trials portal lists eight registered studies on "ovarian rejuvenation," of which two are actively recruiting patients, while four have been terminated or have an uncertain status. Two studies have concluded, with results from one posted to the NIH website. PRP and its derivatives for ovarian treatment show early promise, but require further investigation. Research is accelerating and should be encouraged, particularly placebo-controlled randomized clinical trials.

Effect of SLCO1B1 T521C on Statin-induced Myotoxicity: A Systematic Review and Meta-analysis (SLCO1B1 T521C가 스타틴에 의한 근육독성 발생에 미치는 영향: 체계적 문헌고찰 및 메타분석)

  • Lee, Young Sook;Chun, Pusoon
    • Korean Journal of Clinical Pharmacy
    • /
    • v.28 no.4
    • /
    • pp.320-332
    • /
    • 2018
  • Background: This study was performed to clarify the effect of SLCO1B1 T521C on statin-induced myotoxicity. Methods: The PubMed, Embase, Ovid, and Cochrane Library databases were searched for all published studies between database inception and April 2018. Using Review Manager 5, the pooled odds ratio (OR) and corresponding 95% confidence interval (CI) were determined to assess the effect of SLCO1B1 T521C on statin-induced myotoxicity by using different genetic models. Results: Eleven observational studies and one randomized controlled trial were included in the meta-analysis. The pooled analysis showed that the incidence of statin-induced myotoxicity was significantly associated with the SLCO1B1 521C variant allele. Among patients using statins, the incidence of myotoxicity was higher in those carrying the 521TC or 521CC variant than in those carrying the 521TT variant in the dominant model (TC + CC vs TT, OR: 1.57; 95% CI: 1.20, 2.05; p = 0.001). The 521TC genotype was associated with a higher risk of myotoxicity than the 521TT genotype (OR: 1.42; 95% CI: 1.09, 1.86; p = 0.009). Furthermore, the incidence of myotoxicity was higher in 521CC carriers than in 521TC carriers (OR: 1.40; 95% CI: 1.06, 1.83; p = 0.02) and noticeably higher in 521CC carriers than in 521TT carriers (OR: 2.26; 95% CI: 1.23, 4.17; p = 0.009). Conclusion: The identification of individuals with the SLCO1B1 521C variant allele prior to the initiation of statin therapy might be useful to predict the risk of toxicity development, determine the individual dose, and prevent myotoxicity.

Assessment of Evaporation Rates from Litter of Duck House (오리사 바닥재의 수분 증발량 평가)

  • Lee, Sang-Yeon;Lee, In-Bok;Kim, Rack-Woo;Yeo, Uk-Hyeon;Decano, Cristina;Kim, Jun-gyu;Choi, Young-Bae;Park, You-Me;Jeong, Hyo-Hyeog
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.5
    • /
    • pp.101-108
    • /
    • 2019
  • The domestic duck industry is the sixth-largest among the livestock industries. However, 34.3% of duck houses were the duck houses arbitrarily converted from plastic greenhouses. This type of duck house was difficult to properly manage internal air temperature and humidity environment. Humidity environment inside duck houses is an important factor that directly affects the productivity and disease occurrence of the duck. Although the humidity environments of litters (bedding materials) affect directly the inside environment of duck houses, there are only few studies related to humidity environment of litters. In this study, evaporation rates from litters were evaluated according to air temperature, relative humidity, water contents of litters, and wind speed. The experimental chamber was made to measure evaporation rates from litters. Temperature and humidity controlled chamber was utilized during the conduct of the laboratory experiments. Using the measured data, a multi linear regression analysis was carried out to derive the calculation formula of evaporation rates from litters. In order to improve the accuracy of the multi linear regression model, the partial vapor pressure directly related to evaporation was also considered. Variance inflation factors of air temperature, relative humidity, partial vapor pressure, water contents of litters, and wind speed were calculated to identify multicollinearity problem. The Multiple $R^2$ and adjusted-$R^2$ of regression model were calculated at 0.76 and 0.71, respectively. Therefore, the regression models were developed in this study can be used to estimate evaporation rates from the litter of duck houses.

Effect of flexural and shear stresses simultaneously for optimized design of butterfly-shaped dampers: Computational study

  • Farzampour, Alireza;Eatherton, Matthew R.;Mansouri, Iman;Hu, Jong Wan
    • Smart Structures and Systems
    • /
    • v.23 no.4
    • /
    • pp.329-335
    • /
    • 2019
  • Structural fuses are made up from oriented steel plates to be used to resist seismic force with shear loading resistance capabilities. The damage and excessive inelastic deformations are concentrated in structural fuses to avoid any issues for the rest of the surrounding elements. Recently developed fuse plates are designed with engineered cutouts leaving flexural or shear links with controlled yielding features. A promising type of link is proposed to align better bending strength along the length of the link with the demand moment diagram is a butterfly-shaped link. Previously, the design methodologies are purely based on the flexural stresses, or shear stresses only, which overestimate the dampers capability for resisting against the applied loadings. This study is specifically focused on the optimized design methodologies for commonly used butterfly-shaped dampers. Numerous studies have shown that the stresses are not uniformly distributed along the length of the dampers; hence, the design methodology and the effective implementation of the steel need revisions and improvements. In this study, the effect of shear and flexural stresses on the behavior of butterfly-shaped links are computationally investigated. The mathematical models based on von-Mises yielding criteria are initially developed and the optimized design methodology is proposed based on the yielding criterion. The optimized design is refined and investigated with the aid of computational investigations in the next step. The proposed design methodology meets the needs of optimized design concepts for butterfly-shaped dampers considering the uniform stress distribution and efficient use of steel.