• Title/Summary/Keyword: Controlled mechanical system

Search Result 824, Processing Time 0.025 seconds

A Fundamental Study of Air-Fuel Ratio Control on LPG Liquid Injection Engines (LPG 액체분사엔진의 공연비제어에 관한 기초 연구)

  • Sim, Han-Seop;Sunwoo, Myoungho;Song, Chang-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.80-87
    • /
    • 2002
  • Liquefied petroleum gas (LPG) is used in spark ignition (SI) engines. Fuel injection rate of an injector is affected by fuel temperature and pressure in LPG liquid injection systems for either a multi-point-injection (MPI) or a direct injection (DI) engine. Even fuel injection conditions are varied, the air-fuel ratio should be accurately controlled to reduce exhaust emissions. In this study, a correction factor fur the fuel injection rate of an injector is derived from density ratio and pressure difference ratio. A compensation method of injected fuel amount is proposed for a fuel injection control system. The experimental results for the LPG liquid injection system in a SI engine show that this system works well fur a full range of engine speed and load condition, and the air-fuel ratio is accurately controlled by the proposed correction factor.

Force-reflecting electronic power steering system using fuzzy logic (퍼지 로직을 이용한 힘반사형 전동 조향 장치)

  • 박창선;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.353-356
    • /
    • 1997
  • Vehicle steering system determines the direction of a vehicle. A manual steering system consists of mechanical connections between the steering wheel and tires. Recent power steering system adds an actuator to help a driver to steer easily at low speed. However, at front collision, the driver can be injured by steering shaft and the power steering pump decreases the engine power. To solve these problems, electronic power steering system which connects the steering wheel and tires with electronic connection is proposed, that has advantages such as decrease of engine load and increase of driver safety reactive. Since the ratio between driver's steering torque and steering torque of tires can be controlled freely, the torque which is delivered from the road to the driver through tires and steering wheel can be reshaped to make the driver feel comfortable. In this paper, the ratio of delivering steering torque and the magnitude of force to be delivered from road to driver has been controlled using fuzzy controller, and it's effectiveness has been shown through simulation results.

  • PDF

A Study on Development of Press Brake by Data-based Servo Control System (데이터베이스를 이용한 서보제어방식의 절곡기 개발에 관한 연구)

  • 김경석;강기수;송충현;김성식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.416-421
    • /
    • 2002
  • The purpose of t his paper is to database each factors from experimental results and develop the servo-controlled feeding system on these database. At first, spring back and bending farce are analyzed by basic theory of bending processing. In database, through practical experiment by the expert various types of bending angel and thickness of plate are tested and classified with SB34P and Aluminum. For the development of servo-controlled feeding system, automatic feeding system is designed and manufactured with ball screw and LM guide and performance of the developed feeding system is tested under condition of standard machine tool examination. Also, Mechanical consideration of mainframe in press brake, development of controller based on NC, program for servo-control are studied. Finally, based on experimental data, the system is operated and compared with theoretical data

  • PDF

Development of A New Device for Controlling Infinitesimal Flows inside a Lab-On-A-Chip and Its Practical Application (랩온어칩 내부 미세유동 제어를 위한 새로운 장치의 개발 및 적용)

  • Kim, Bo-Ram;Kim, Guk-Bae;Lee, Sang-Joon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.305-308
    • /
    • 2006
  • For controlling micro-flows inside a LOC (lab-on-a-chip) a syringe pump or an electronic device for EOF(electro-osmotic flow) have been used in general. However, these devices are so large and heavy that they are burdensome in the development of a portable micro-TAS (total analysis system). In this study, a new flow control system employing pressure chambers, digital switches and speed controllers was developed. This system could effectively control the micro-scale flows inside a LOC without any mechanical actuators or electronic devices We also checked the feasibility of this new control system by applying it to a LOC of micro-mixer type. Performance tests show that the developed control system has very good performance. Because the flow rate in LOC is controlled easily by throttling the speed controller, the flows in complicate microchannels network can be also controlled precisely.

  • PDF

Optimal control of stochastic continuous discrete systems applied to FMS

  • Boukas, E.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.733-743
    • /
    • 1989
  • This paper deals with the control of system with controlled jump Markov disturbances. A such formulation was used by Boukas to model the planning production and maintenance of a FMS with failure machines. The optimal control problem of systems with controlled jump Markov process is addressed. This problem describes the planning production and preventive maintenance of production systems. The optimality conditions in both cases finite and infinite horizon, are derived. A numerical example is presented to validate the proposed results.

  • PDF

Robot System Design Capable of Motion Recognition and Tracking the Operator's Motion (사용자의 동작인식 및 모사를 구현하는 로봇시스템 설계)

  • Choi, Yonguk;Yoon, Sanghyun;Kim, Junsik;Ahn, YoungSeok;Kim, Dong Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.605-612
    • /
    • 2015
  • Three dimensional (3D) position determination and motion recognition using a 3D depth sensor camera are applied to a developed penguin-shaped robot, and its validity and closeness are investigated. The robot is equipped with an Asus Xtion Pro Live as a 3D depth camera, and a sound module. Using the skeleton information from the motion recognition data extracted from the camera, the robot is controlled so as to follow the typical three mode-reactions formed by the operator's gestures. In this study, the extraction of skeleton joint information using the 3D depth camera is introduced, and the tracking performance of the operator's motions is explained.

A Study on Voltage Collapse Mechanism using Equivalent Mechanical Model

  • Kim, Do-Hyung;Ryu, Heon-Su;Lee, Jong-Gi;Moon, Young-Hyun
    • KIEE International Transactions on Power Engineering
    • /
    • v.12A no.1
    • /
    • pp.6-14
    • /
    • 2002
  • In this paper, an EMM(Equivalent Mechanical Model) Is developed to explain the voltage collapse mechanism by reflecting the effects of reactive powers. The proposed EMM exactly represents the voltage instability mechanism described by the system equations. By the use of the EMM model, the voltage collapse mechanism has been illustrated by showing the exactness of the results. The stable region has been investigated with a reactive-power-controlled two-bus system, which shows that special alerts are required when the system operates with leading power factor. It is also discussed a system transform technique to eliminate the resistance component of the Thevenin equivalent impedance for practical applications. Finally, the results adopting the proposed method fur sample systems which were transformed are listed

Impedance Control of Backdrivable Hydraulic Actuation Systems with Explicit Disturbance Estimation (직접 외란 추정을 통한 역구동성 유압 구동 시스템의 임피던스 제어)

  • Yoo, Sunkyum;Chung, Wan Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.348-356
    • /
    • 2019
  • The backdrivable servovalve is a desirable component for force and interaction control of hydraulic actuation systems because it provides direct force generation mechanical impedance reduction by its own inherent backdrivability. However, high parametric uncertainty and friction effects inside the hydraulic actuation system significantly degrade its advantage. To solve this problem, this letter presents a disturbance-adaptive robust internal-loop compensator (DA-RIC) to generate ideal interactive control performance from the backdrivable-servovalve-based system. The proposed control combines a robust internal-loop compensator structure (RIC) with an explicit disturbance estimator designed for asymptotic disturbance tracking, such that the controlled system provide stable and ideal dynamic behavior for impedance control, while completely compensating the disturbance effects. With the aid of a backdrivable servovalve, we show that the proposed control structure can be implemented based on a simplified nominal model, and the controller enables implementation without accurate knowledge of the target system parameters and disturbances. The performance and properties of the proposed controller are verified by simulation and experiments.

Effective Control of Indoor Air Pollutant using VAV/BPFS (VAV/BPFS를 이용한 실내공기 오염물질의 효율적 제어)

  • 최성우
    • Journal of Environmental Science International
    • /
    • v.7 no.3
    • /
    • pp.327-334
    • /
    • 1998
  • The oil crisis of the 1970s and the rise in oil prices motivated people to implement energy conservation strategies. Buildings were fitted with additional Insulation and reduced ventilation rates. The reduction of mechanical and natural ventilation rate led to Increases In Indoor pollutant concentrations which result- ed In Increased health risks from Indoor exposure to pollutants. The variable-air-volume /bypass fitration system/VAV/BPFS) is a variation of the conventional VAV systems, The VAV/BPFS is an electronically controlled system that provides costegectlve thermal comfort and acceptable indoor air quality Under controlled conditions In a chamber, a series experiments were performed to compare the ability of a VAV/BPFS to remove Indoor aerosol concentration and to reduce energy consumption no that ability of conventional VAV system. Results show that the VAV/BPFS Increases the effective ventilation rate and removes indoor air pollutant, and maintains acceptable indoor air Quality without sacrificing energy consumption.

  • PDF

A Positioning Mooring System Design for Barge Ship Based on PID Control Approach

  • Kim, Youngbok
    • Journal of Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.94-99
    • /
    • 2013
  • This paper presents some experimental results about Position Mooring (PM) system applied to the barge ship. In PM operation, the station keeping in surge, sway of vessel is provided by the mooring system. In this paper, a system, consisting of a barge vessel and mooring lines, is mathematically modeled. The position and orientation of vessel is controlled by changing the tensions in the mooring lines. The PID control strategy is applied to evaluate the efficiency of proposed system. Experimental result which corresponds to the applied control strategy is presented and discussed.