• Title/Summary/Keyword: Controlled Cooling Rate

Search Result 107, Processing Time 0.031 seconds

Fabricating Apparatus of Rheological Material for forging by Rotational Barrel (회전식 바렐에 의한 단조용 레오로지 소재 제조)

  • Kim T.W.;Seo P.K.;Oh S.W.;Kang C.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.645-648
    • /
    • 2005
  • The rotational barrel type equipment has been designed for the new rheology fabrication process. During the continuous rotation of barrel with a constant temperature, the shear rate is controlled with the rotation speed and rotation time of barrel. The barrel surface can be controlled the temperature by the induction heating and cooling system. Many experiments were widely examined by using this system with controlling the rotation speed and the rotation time. The possibility for the rheoforming process was investigated with microstructural characteristics.

  • PDF

Temperature Controllable HPLC Column for Preparative Fractionation of Polymers

  • Im, Kyu-Hyun;Park, Hae-Woong;Kim, Young-Tak;Chang, Tai-Hyun
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.544-548
    • /
    • 2008
  • An HPLC column with a self-contained temperature control device was constructed for preparative temperature programmed interaction chromatography. Two Peltier plates were attached to a large bore column ($120{\times}22\;mm$ i.d.) and the column temperature was controlled by PID mode feed back control. At a flow rate of 1.5 mL/min, the column temperature could be increased and decreased at a rate as high as $50^{\circ}C/min$ and $10^{\circ}C/min$, respectively, which is much faster than using a column jacket and bath/circulator. The rapid heating and cooling rates allows a high repetition rate of chromatographic fractionation. The performance of the temperature controllable column was demonstrated successfully by the fractionation of homo-polymer precursors from diblock copolymers.

Controlled Growth of Large-Area Mono-, Bi-, and Few-Layer Graphene by Chemical Vapor Deposition on Polycrystalline Copper Surfaces

  • Kim, Yooseok;Song, Wooseok;Lee, Suil;Cha, Myoung-Jun;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.614-614
    • /
    • 2013
  • The effect of graphene growth parameters on the number of graphene layers were systematically studied and growth mechanism on copper substrate was proposed. Parameters that could affect the thickness of graphene growth include the pressure in the system, gas flow rate, growth pressure, growth temperature, and cooling rate. We hypothesis that the partial pressure of both the carbon sources and hydrogen gas in the growth process, which is set by the total pressure and the mole fraction of the feedstock, could be the factor that controls the thickness of the graphene. A synthetic method to produce such large area graphene films with precise thickness from mono- to few-layer would be ideal for chemists and physicists to explore the promising electronic applications of these materials. Here, large-area uniform mono-, bi-, and few-layer graphene films were successfully synthesized on copper surface in selective growth windows, with a finely tuned total pressure and $CH_4$/$H_{2gas}$ ratio. Our findings may facilitate both the large-area synthesis of well-controlled graphene features and wide range of applications of graphene.

  • PDF

A Characteristic of Microstructures in Bonding Interlayer of Brazed Titanium to Copper (브레이징한 Ti/Cu 접합계면부의 미세조직 특성)

  • 김우열;정병호;이성렬
    • Journal of Welding and Joining
    • /
    • v.13 no.3
    • /
    • pp.106-115
    • /
    • 1995
  • To know the bonding phenomena of Ti/Cu brazed joint, a characteristic of microstructures in bonding interlayer of vacuum brazed pure Ti to Cu has been studied in the temperature range from 1088 to 1133K for various bonding times using Ag-28wt%Cu filler metal. Also intermediate phases formed in bonded interlayer and behavior of layer growth have been investigated. The obtained results in this study are as follows: 1) Liquid insert metal width at the each brazing temperature was proportional to the square root of brazing time, and it was considered that the liquid insert metal width was controlled by the diffusion rate process of primary .alpha.-Cu formed at the Ti side. 2) Intermediate phases formed near the Ti interface were .betha.-Ti and intermetallic compounds TiCu, Ti$_{2}$Cu, Ti$_{3}$Cu, and TiCu. 3) .betha.-Ti formed in Ti base metal durig brazing transformed to lamellar structure, .alpha.-Ti + Ti$_{2}$Cu. The structure came from the eutectoil decomposition reaction in cooling. And the width of .betha.-Ti layer was proportional to the square root of brazing time, and it was considered that the growth of .betha.-Ti layer was controlled by interdiffusion rate process in .betha.-Ti. 4) The layer growth of TiCu, Ti$_{3}$Cu$_{4}$ and TiCu, phases formed near the Ti interface was linerface was linearly proportional to the brazing time, and it was considered that the layer growth of these phases was controlled by the chemical reaction rate at the interface.

  • PDF

Development of Control Algorithm for Greenhouse Cooling Using Two-fluid Fogging System (이류체 포그 냉방시스템의 제어알고리즘 개발)

  • Nam, Sang-Woon;Kim, Young-Shik;Sung, In-Mo
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.138-145
    • /
    • 2013
  • In order to develop the efficient control algorithm of the two-fluid fogging system, cooling experiments for the many different types of fogging cycles were conducted in tomato greenhouses. It showed that the cooling effect was 1.2 to $4.0^{\circ}C$ and the cooling efficiency was 8.2 to 32.9% on average. The cooling efficiency with fogging interval was highest in the case of the fogging cycle of 90 seconds. The cooling efficiency showed a tendency to increase as the fogging time increased and the stopping time decreased. As the spray rate of fog in the two-fluid fogging system increased, there was a tendency for the cooling efficiency to improve. However, as the inside air approaches its saturation level, even though the spray rate of fog increases, it does not lead to further evaporation. Thus, it can be inferred that increasing the spray rate of fog before the inside air reaches the saturation level could make higher the cooling efficiency. As cooling efficiency increases, the saturation deficit of inside air decreased and the difference between absolute humidity of inside and outside air increased. The more fog evaporated, the difference between absolute humidity of inside and outside air tended to increase and as the result, the discharge of vapor due to ventilation occurs more easily, which again lead to an increase in the evaporation rate and ultimately increase in the cooling efficiency. Regression analysis result on the saturation deficit of inside air showed that the fogging time needed to change of saturation deficit of $10g{\cdot}kg^{-1}$ was 120 seconds and stopping time was 60 seconds. But in order to decrease the amplitude of temperature and to increase the cooling efficiency, the fluctuation range of saturation deficit was set to $5g{\cdot}kg^{-1}$ and we decided that the fogging-stopping time of 60-30 seconds was more appropriate. Control types of two-fluid fogging systems were classified as computer control or simple control, and their control algorithms were derived. We recommend that if the two-fluid fogging system is controlled by manipulating only the set point of temperature, humidity, and on-off time, it would be best to set up the on-off time at 60-30 seconds in time control, the lower limit of air temperature at 30 to $32^{\circ}C$ and the upper limit of relative humidity at 85 to 90%.

Capacity Modulation of a Multi-Type Heat Pump System using PID Control with Fuzzy Logic (퍼지 로직 적용 PID 제어를 이용한 멀티형 열펌프의 용량조절)

  • 김세영;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.9
    • /
    • pp.810-817
    • /
    • 2001
  • Performance of a water-to-water multi-type heat pump system using R22 which has tow indoor units has been investigated experimentally. The refrigerant flow rate of each indoor unit was regulated by an electronic expansion valve and the total refrigerant flow rate of the system was controlled by a variable speed compressor. In the system, evaporator outlet pressure of refrigerant and outlet temperatures of secondary fluid from indoor units were selected as control variables. Experiments were executed for both cooling and heating modes using PID control method with fuzzy logic, and results of the test are compared with a classical PID method. In the case of PID control with fuzzy logic, the fuzzy control rules corrects PID parameters each time. Results show that PID control with fuzzy logic has the merits of quick response and reduced overshoot.

  • PDF

The Lubrication Effect of Liquid Nitrogen in Cryogenic Machining [?$\pm$]-Part 2: Tool Wear and Chip Microstructures- (Liquid Nitrogen의 감찰 효과 -공구 마모에 의한 마찰 계수 이론적 전개-)

  • Jun Seong Chan;Jeong Woo Cheol
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.2
    • /
    • pp.223-235
    • /
    • 2002
  • This paper presents some indirect physical evidences indicating that reduced friction occurs in an economical cryogenic machining process, in which LN2 is applied selectively in well-controlled jets to the localized cutting zone. These evidences include cutting force components, tool wear rate and chip morphology. LN2 reduced the tool wear rate to a great extent and elongated the tool life up to four times compared to emulsion cooling. The friction reduction was further reflected in larger shear angle and less secondary deformation in the chip microstructures. This study also found that the effectiveness of LN2 lubrication depends on the approach how LN2 is applied.

A study on the Second-Harmonic Generation(SBG) Conversion Characteristics of Nd:YAG Laser adopted Differential Superposition Mesh (중첩회로를 적용한 펄스형 Nd:YAG 레이저의 2차 SHG 변환효율에 관한 특성연구)

  • 김휘영;박두열
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.215-218
    • /
    • 2001
  • A pulsed Nd:YAG laser is used widely for materials processing and medical instrument. It's very important to control the laser energy density in those fields using a pulsed Nd:YAG laser. A pulse repetition rate and a pulse width are regarded as the most dominant factors to control the energy density of laser beam. In this paper, the alternating charge and discharge system was designed to adjust a pulse repetition rate. This system is controlled by microprocessor and allows to frequence an expensive condenser for high frequency to cheap one for low frequency. In addtion, The microcontroller monitors the flow of cooling water, short circuit, and miss firing and so on. We designed Nd:YAG laser firmware with smart microcontroller, and want to explain general matters about the firmware from now.

  • PDF

Effects of Initial Nucleation Condition at the Start Block on the Grain Size and Growth Direction in Directionally Solidified CM247LC Superalloy (CM247LC 초내열합금에서 일방향응고 스타트 블록의 초기 핵생성 조건에 따른 결정립 성장)

  • Yoon, Hye-Young;Lee, Je-Hyun;Jung, Hyeong-Min;Seo, Seong-Moon;Jo, Chang-Young;Gwon, Seok-Hwan;Chang, Byeong-Moon
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.58-63
    • /
    • 2011
  • The grain size and growth direction of a directionally solidified turbine blade were evaluated by the initial nucleation condition at the start block of directional solidification. The initial nucleation condition was controlled by inserting a Ni foil on the directional solidification plate of the directional solidification furnace. Fine grains with good orientation were obtained in the faster cooling condition at the start block. The nucleus number was compared with the cooling rate of the start block by electron back scattered diffraction (EBSD). DSC (differential scanning calorimeter) analysis was performed to compare the melting point and undercooling for nucleation of the coarse nuclei and fine nuclei of the start block. The faster cooling condition at the start block showed more undercooling for nucleation and smaller size of nuclei which resulted in a fine grain with good orientation in the directional turbine blade.

An Experimental Study on the Atomization Characteristics of the Rotary Cup Atomizer (회전컵 무화기의 미립화 특성에 관한 실험적 연구)

  • Jin, S.B.;Cho, D.J.;Yoon, S.J.
    • Journal of ILASS-Korea
    • /
    • v.6 no.4
    • /
    • pp.14-21
    • /
    • 2001
  • Rotary atomizer is widely used in practical application ranging from combustion, cooling, spray drying, agriculture, chemical system. Rotary cup atomizer has some advantages such as extreme versatility and liquid atomization successfully varying widely in viscosity. In rotary atomization, the feed liquid is centrifugally accelerated to high velocity and the liquid extends over the rotating surface as a thin film before being discharged into an atmosphere. The degree of rotary atomization depends upon peripheral speed, feed rate, liquid properties and atomizer design. An important asset is that thickness and uniformity of the liquid sheet can readily be controlled by regulating the liquid flow rate and the rotational speed. LDPA(Laser Diffraction Particle Analyser) and image aquisition system are used to measure drop size distribution and spray pattern. The atomization characteristics of the rotary cup atomizer is investigated experimentally by varing the liquid feed rate, rotary cup speed and air velocity for atomization. As a results, the effect of air velocity on the atomization characteristics such as drop size and spray uniformity is considerably greater than variation of those with liquid feed rate.

  • PDF