• Title/Summary/Keyword: Controlled Cooling Rate

검색결과 107건 처리시간 0.019초

냉각제어된 Fe-Si-Mn-P 고장력 강판의 미세조직 및 기계적성질 (Microstructure and Mechanical Properties of Fe-Si-Mn-P High Strength Steel Sheet Controlled by Cooling Rate)

  • 문원진;김익수;강창용;김헌주;성장현;김기돈
    • 열처리공학회지
    • /
    • 제10권2호
    • /
    • pp.109-120
    • /
    • 1997
  • Microstructure and mechanical properties of Fe-Si-Mn-P high strength steel sheet have been investigated by controlling the cooling rate. Bainite and ferrite were obtatined by annealing in the ferrite pluse austenite region, and ferrite and austenite were obtatined after annealing in the fully austenite region. Ferrite and pearlite were obtained when the cooling rate was controlled from the annealing temperature above $760^{\circ}C$ and bainite showed with increasing cooling rate, however below $760^{\circ}C$ ferrite and bainite were obtained. Tensile strengths and hardness nearly unchanged with increasing cooling rate after control the cooling rate from the temperature above $760^{\circ}C$, while tensile strengths increased and elongation decreased with increasing cooling rate when the cooling rate was controlled from the tempeature below $760^{\circ}C$. Without regard to annealing temperature, tensile strength increased and elongation decreased with increasing cooling rate. Tensile strengths and elongation values heat treated in the ferrite plus austenite region were higher than those in the fully austenite region. Retained austenite and strength-elongation balance showed the maximum value at $780^{\circ}C$ and decreased with increasing annealing temperature. Strength-elongation balance value was controlled by the retained austenite.

  • PDF

가솔린엔진의 금속면온도 및 냉각수로의 전열 특성에 관한 실험적 연구 (An Experimental Study on the Characteristics of Metal Temperature and Heat Rejection to Coolant of Gasoline Engine)

  • 오창석;유택용;신승용;최재권
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.35-41
    • /
    • 2001
  • In recent applications, map controlled thermostat has been adapted to optimize engine cooling system and vehicle cooling system. First of all, this strategy is focused on improving fuel consumption rate and reducing emissions, especially unburned hydrocarbon. The object can be obtained through controlling engine metal temperature by varying engine coolant temperature with engine load and speed. To achieve this goal, it is necessary to understand the characteristics of engine metal temperature and heat rejection rate to coolant. From the results of tested engines, it is obvious that fuel consumption rate has more dominant effect on engine metal temperatures than the corresponding engine power does. Also, Re-Nu relation which shows heat rejection rate to coolant in function of air-fuel mixture and engine specifications has been studied. Also, the empirical Re-Nu relation at full loaded engine was developed.

  • PDF

냉각속도에 따른 Al-2.7wt%Li 합금계의 응고조직 (Solidification Structure of Al-2.7wt%Li Alloys by Cooling Rate Controlled)

  • 심동섭;최정철;조형호;권해욱
    • 한국주조공학회지
    • /
    • 제11권5호
    • /
    • pp.398-405
    • /
    • 1991
  • Al-Li alloy has a high strength with low density. Practically this alloy should use by the material which made from the rapid solidification. Therefore we examine the solidification structures of alloy with cooling rate. According to cooling rate increased, grain size and secondary dendrite arm spacing were smaller. Also grain size was further smaller by Zr added. To obtain more fine solidification structure, rapid solidification by single roll melt spinning was performed. According to higher wheel speed, cooling rate increased and cell size was smaller. Because of locally different cooling rate, different cell size was obtained in same specimen. More than cooling rate $10^6^{\circ}C$ /sec, zone A(insensible zone to corrosion)was obtained.

  • PDF

보론강판의 열간 벤딩 공정에서 성형인자가 기계성질에 미치는 영향 (The Effect of Forming Parameter on Mechanical Properties in Hot Bending Process of Boron Steel Sheet)

  • 권기영;신보성;강충길
    • 소성∙가공
    • /
    • 제19권4호
    • /
    • pp.203-209
    • /
    • 2010
  • In the hot press forming process (HPF), a martensitic structure is obtained by controlling the cooling rate when cooling a boron sheet that is heated up to over $900^{\circ}C$. The HPF process has various advantages such as the improvement in formability and material properties and minimal spring back of the deformed materials. The factors related to the cooling rate depend on the heat transfer characteristics between heated materials and dies. Therefore, in this study, the cooling rate is controlled by adjusting the heat transfer coefficient of the material at the pressing process. And, the mechanical properties and microstructure of the deformed material is demonstrated during the HPF process where cold dies are used to form the heated steel plate. This is achieved by varying the major forming conditions that control the cooling rate regarded as the most important process parameter.

비조질강 온간단조를 위한 공정검토 (Study of Warm Forging Process for Non-Heat-Treated Steel)

  • 박종수;강정대;이영선;이정환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.525-530
    • /
    • 2001
  • As a part of efforts to examine feasibility of warm forging near-net-shape process for non-heat-treated steel to replace quenched and tempered S45C steel, the optimized process condition has been determined to be $820^{\circ}C$ for heating, 10/sec for strain rate of forging and approximately 250MPa for flow stress from observed results such as the $A_{3}$ transformation temperature of about $790^{\circ}C$, the fully dynamic recrystallized behavior between $800^{\circ}C\;and\;850^{\circ}C$ when compressed up to 63% engineering strain at 10/sec strain rate, and the high temperature microsturctural stability. Also, controlled cooling rate of $6.3^{\circ}C/sec$ by water-spraying at a rate of $0.10cc/sec-cm^{2}$ for 60seconds followed by air-cooling right after forging process has been considered in this study as a feasible approach based on examination of the microsturcture of mixed ${\alpha}-ferrite$ and pearlite, the hardness and tensile properties meeting specification, and the reduced total cooling time to room temperature. Successive works would be carried out for the impact strength, machinalility, and forgeability at this process in the near future.

  • PDF

고분자막전해질 연료전지의 열관리 (Thermal Management of Proton Exchange Membrane Fuel Cell)

  • 유상석;김한석;이상민;이영덕;안국영
    • 한국수소및신에너지학회논문집
    • /
    • 제18권3호
    • /
    • pp.292-300
    • /
    • 2007
  • A dynamic system model of a proton exchange membrane fuel cell(PEMFC) has been developed. The PEMFC of this study has large active area with water cooling in order to simulate the performance of the commercially viable PEMFC system for the transportation. A PEMFC stack model is a transient thermal model which is respond to the dynamic change of the coolant temperature and the flow rate. The dynamic cooling system model has been developed to determine the coolant flow rate and the coolant temperature. Prior to the system level study, thermal management criteria have been set up and brought to the control command of the cooling system. Since the system model is designed to evaluate the effect of thermal management on the system performance, it is attempted to determine the proper control algorithm of the cooling system so that the PEMFC system is working on the thermal management criteria. As a result of simulation, feedback controlled cooling system consumes less power and produce more power comparing with that of conventionally controlled cooling system.

냉간성형용 강의 미세조직과 기계적성질에 미치는 제어냉각의 영향 (Effects of Controlled Cooling on Microstructures and Mechanical Properties of a Steel for Cold Forming)

  • 김남규;박상덕;김병옥;최회진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.391-394
    • /
    • 2004
  • The main purpose of the present study has been placed on investigating the effects of controlled cooling on the microstructures and mechanical properties of 0.2C-0.2Si-0.8Mn-B steel for cold forming. The steel was processed in steel making factory(EAF, VD) and casted to $\Box160$ billet then reheated in walking beam furnace and rolled to coil, rolling stock was acceleratly cooled before coiling. Microstructual observation, tensile test and charpy impact tests were conducted. The mechanical properties and microsture of the steel were changed by cooling condition. The grain size of rolled product decreased with increasing cooling rate, resulting in increase of impact toughness and tensile strength, elongation and reduction of area . From the result of this study, it is conformed that mechanical properties and microstructure of 0.2C-0.2Si-0.8Mn-B steel for cold forming were enhanced by accelerated cooling.

  • PDF

화염법으로 제조된 TiO2 나노분말의 결정구조에 미치는 화염가스 유량의 영향 (Effect of the Flow Rate of Flame Gases on the Crystal Structure of TiO2 Nanopowder Synthesized by Flame Method)

  • 지현석;안재평;허무영;박종구
    • 한국분말재료학회지
    • /
    • 제10권6호
    • /
    • pp.448-455
    • /
    • 2003
  • $TiO_2$ nanopowder has been synthesized by means of the flame method using a precursor of titanium tetraisopropoxide (TTIP, Ti$(OC_3H_7)_4)$. In order to clarify the effect of cooling rate of hot flame on the formation of $TiO_2$ crystalline phases, the flame was controlled by varying the mixing ratio and the flow rate of gases. Anatase phase was predominantly synthesized under the condition having the steep cooling gradient in flame, while a slow cooling gradient enabled to form almost rutile $TiO_2$ nanopowder of above 95%.

다목적용 치과용 금합금의 소성 시 냉각속도와 계류시간에 따른 경도와 미세구조의 변화 (Hardness and microstructural changes by cooling rate and holding time during porcelain firing of a multi-purpose dental gold alloy)

  • 조미향
    • 대한치과기공학회지
    • /
    • 제33권4호
    • /
    • pp.271-281
    • /
    • 2011
  • Purpose: The aim of this study is to investigate the changes in hardness and microstructure of a dental multipurpose alloy after simulated complete firing with controlled cooling rate and holding time by characterizing the changes in hardness and microstructure after simulated firing with various cooling rates and holding times. Methods: Before hardness testing, the specimens were solution treated and then were rapidly quenched into ice brine. The specimens were completely fired in furnace. Hardness measurements were made using a Vickers microhardness tester. The specimens were examined at 15 kV using a field emission scanning electron microscope. Results: The maximum hardness value was obtained at stage 0 after simulated firing with various cooling rates (quick cooling, stage 0, stage 1, stage 2, stage 3). By the repetitive firing, the hardness of the tested alloy decreased gradually. By holding the specimen at $500^{\circ}C$ for 10-20min after simulated firing, the hardness increased apparently. However, to hold the alloy for long periods of time in the relatively high temperature after simulated firing resulted in the formation of thick oxidation layer. The oxide film formed on the surface of the alloy after simulated complete firing with controlled cooling rate, which was mainly composed of O and Zn. Conclusion: It is reasonable to hold the alloy at $500^{\circ}C$ for 10-20min after complete firing in other to improve the final hardness of the alloy.

냉각 시스템 제어에 따른 디젤 엔진의 배기가스 저감에 관한 연구 (A study on the reduction of emission by controlled cooling system in a diesel engine)

  • 최경욱;조원준;이기형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3294-3299
    • /
    • 2007
  • These days the exhaustion of petroleum resources and environmental problems are getting serious. Many researchers are focused on low emission and high performance vehicles. Therefore, we should concern about emission regulation when we design a new car. In this study, we investigated the characteristics of the traditional mechanical engine cooling systems which control the engine temperature using engine speed and wax type thermostat. This experiment used three components which are Radiator fan, water pump and water valve controlled by an electronic system based on the engine status (load, speed). We elucidated how different between traditional mechanical cooling system and electronic cooling system which control coolant temperature and coolant flow rate in a DI diesel engine in this paper. The results revealed a fuel saving and an emission (CO, HC) reduction on NEDC cycle.

  • PDF