• Title/Summary/Keyword: Controlled

Search Result 23,696, Processing Time 0.055 seconds

Investigation of Rock Slope Failures based on Physical Model Study (모형실험을 통한 암반사면의 파괴거동에 대한 연구)

  • Cho, Tae-Chin;Suk, Jae-Uk;Lee, Sung-Am;Um, Jeong-Gi
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.447-457
    • /
    • 2008
  • Laboratory tests for single plane sliding were conducted using the model rock slope to investigate the cut slope deformability and failure mechanism due to combined effect of engineering characteristics such as angle of sliding plane, water force, joint roughness and infillings. Also the possibility of prediction of slope failure through displacement monitoring was explored. The joint roughness was prepared in forms of saw-tooth type having different roughness specifications. The infillings was maintained between upper and lower roughness plane from zero to 1.2 times of the amplitude of the surface projections. Water force was expressed as the percent filling of tension crack from dry (0%) to full (100%), and constantly increased from 0% at the rate of 0.5%/min and 1%/min upto failure. Total of 50 tests were performed at sliding angles of $30^{\circ}$ and $35^{\circ}$ based on different combinations of joint roughness, infilling thickness and water force increment conditions. For smooth sliding plane, it was found that the linear type of deformability exhibited irrespective of the infilling thickness and water force conditions. For sliding planes having roughness, stepping or exponential types of deformability were predominant under condition that the infilling thickness is lower or higher than asperity height, respectively. These arise from the fact that, once the infilling thickness exceeds asperities, strength and deformability of the sliding plane is controlled by the engineering characteristics of the infilling materials. The results obtained in this study clearly show that the water force at failure was found to increase with increasing joint roughness, and to decrease with increasing filling thickness. It seems possible to estimate failure time using the inverse velocity method for sliding plane having exponential type of deformability. However, it is necessary to estimate failure time by trial and error basis to predict failure of the slope accurately.

Inheritance of Kunitz Trypsin Inhibitor and P34 Protein in Soybean Seed (콩 종자에서 쿠니츠트립신인히비터와 P34 단백질의 유전)

  • Han, Eun-Hui;Sung, Mi-Kyung;Baek, Woon-Jang;Shim, Sang-In;Kim, Min-Chul;Chung, Jong-Il
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.1
    • /
    • pp.78-82
    • /
    • 2012
  • Soybean [$Glycine$ $max$ (L.) Merr.] protein is a high quality source for food and feed. But, antinutritional factors in the raw mature soybean are exist. Kunitz trypsin inhibitor (KTI) protein is a main antinutritional factor in soybean seed. Also, P34 protein, referred as $Gly$ $m$ Bd 30K, has been identified as a predominant immunodominant allergen. Genetic relationship between KTI protein and P34 protein could be useful in soybean breeding program for the genetic elimination or reduction of these factors. The objective of this study was to determine the independent inheritance or linkage between KTI protein and P34 protein in soybean seed. A total of 479 $F_2$ seeds were obtained from the cross of 07B1 and PI567476 parents. KTI protein and relative amount of P34 protein were analysed from $F_2$ seeds harvested from the F1 plants by using SDS-PAGE and Western blot analysis. The segregation ratios of 3 : 1 for KTI protein (353 KTI protein present : 126 KTI protein absent) and relative amount of P34 protein (363 normal amount of P34 protein : 116 low amount of P34 protein). The segregation ratio of 3 : 1 suggested that KTI protein and relative amount of P34 protein in mature soybean seed were controlled by a single major gene. The segregation ratios of 9 : 3 : 3 : 1 (266 KTI protein present, normal amount of P34 protein: 88 KTI protein present, low amount of P34 protein: 102 KTI protein absent, normal amount of P34 protein: 23 KTI protein absent, low amount of P34 protein) and Chi-square value (${\chi}^2$=3.31, P=0.346) were observed in $F_2$ seeds. This data showed that KTI protein was inherited independently with relative amount of P34 protein in soybean. These results will be helpful in breeding program for selecting the line with lacking KTI protein and reduced amount of P34 protein in soybean.

A Study on the Marine Biological and Chemical Environments in Yeosu Expo Site, Korea (여수 엑스포 해역의 생물.화학적 해양환경 특성)

  • Noh, Il-Hyeon;Oh, Seok-Jin;Park, Jong-Sick;An, Yeong-Kyu;Yoon, Yang-Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2010
  • In order to understand the biological environmental characteristics with temporal variations of the physico-chemical factors in 2012 Yeosu Expo site of Korea, we investigated at one station, once per week, from April 2006 to December 2007. The surface water temperature ranged from 6.8 to $27.8^{\circ}C$ and the bottom water temperature ranged from 6.3 to 25.9 $25.9^{\circ}C$. The salinity varied from 12.8 to 33.0 psu in the surface water and from 25.2 to 33.6 psu in the bottom water. A strong halocline was observed between the surface and bottom layers in the summer when a rapid decrease of salinity coincided with heavy rainfall. The DIN concentration ranged from 1.36 to $82.7{\mu}M$ in the surface water and from 0.82 to $25.2{\mu}M$ in the bottom water. Phosphate concentration varied from 0.06 to $2.13{\mu}M$ in the surface water and from 0.07 to $1.38{\mu}M$ in the bottom water. Silicate was $1.68-52.0{\mu}M$ in the surface water and $1.37-30.7{\mu}M$ in the bottom water. The nutrient concentrations were generally high during heavy rainfalls and low water temperature periods, and considerably decreased in spring and autumn. The N/P ratio ranged from 4.43 to 325 in the surface water and from 3.8 to 321 in the bottom water. It increased rapidly during the heavy rainfall season and remained at a value of approximately 16 in other periods. The chlorophyll a concentration ranged from 0.46 to $65.0{\mu}g$ $L^{-1}$ in the surface water and from 0.71 to $15.0{\mu}g$ $L^{-1}$ in the bottom water. $Chl-{\alpha}$ concentration remained low in periods of low water temperature, however rapidly increased in periods of high water temperature. From the results of principal component analysis (PCA) and multiple regression analysis (MRA), we conclude that temporal variations of physico-chemical and biological factors were greatly affected by the influx of fresh water, and that nutrients were well controlled by their uptake and assimilation by phytoplankton. Also, during the low water temperature periods, environmental structure in this study site was affected by recycled nutrients through nutrient cycling and mineralization.

Morphological Characteristics Optimizing Pocketability and Text Readability for Mobile Information Devices (모바일 정보기기의 소지용이성과 텍스트 가독성을 최적화하기 위한 형태적 특성)

  • Kim, Yeon-Ji;Lee, Woo-Hun
    • Archives of design research
    • /
    • v.19 no.2 s.64
    • /
    • pp.323-332
    • /
    • 2006
  • Information devices such as a cellular phone, smart phone, and PDA become smaller to such an extent that people put them into their pockets without any difficulties. This drastic miniaturization causes to deteriorate the readability of text-based contents. The morphological characteristics of size and proportion are supposed to have close relationships with the pocketability and text readability of mobile information devices. This research was aimed to investigate the optimal morphological characteristics to satisfy the two usability factors together. For this purpose, we conducted an controlled experiment, which was designed to evaluate the pocketability according to $size(4000mm^2/8000mm^2)$, proportion(1:1/2:1/3:1), and weight(100g/200g) of information devices as well as participants' pose and carrying method. In the case of male participants putting the models of information device into their pockets, 2:1 morphological proportion was preferred. On the other hand, the female participants carrying the models in their hands preferred 2:1 proportion$(size:4000mm^2{\times}2mm)$ and 3:1 proportion$(size:8000mm^2{\times}20mm)$. For the device in the size of $4000mm^2$, it was found that the weight of device has an significant effect on pocketability. In consequence, 2:1 proportion is optimal to achieve better pocketability. The second experiment was about how text readability is affected by size $(2000mm^2/4000mm^2/8000mm^2)$ and proportion(1:1/2:1/3:1) of information devices as well as interlinear space of displayed text(135%/200%). From this experiment result, it was found that reading speed was increased as line length increased. Regarding the subjective assessment on reading task, 2:1 proportion was strongly preferred. Based on these results, we suggest 2:l proportion as an optimal proportion that satisfy pocketability of mobile information devices and text readability displayed on the screen together. To apply these research outputs to a practical design work efficiently, it is important to take into account the fact that the space for input devices is also required in addition to a display screen.

  • PDF

Quality of Surface Water for lrrigation around Controlled Horticultural Area in Gyeongnam (경남지방 시설원예지 농업용 지표수의 수질 현황)

  • Heo, Jong-Soo;Ha, Yeong-Rae;Seo, Jeoung-Yoon;Cho, Ju-Sik;Lee, Sung-Tae;Lee, Hong-Jae
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.4
    • /
    • pp.356-364
    • /
    • 1997
  • To investigate the water quality status of agricultural water source for greenhouse area in Gyeongnam, the surface water quality was examined six times from October in 1995 to March in 1996 at five areas in Gyeongnam. The pH values of surface water were in the range of 6.6${\sim}$9.1 pH in Kimhae and Changnyong areas were out of range in 6.0${\sim}$8.5 which was water quality standard for agriculture. The DO values of surface water were relatively high with average 10.0mg/l in Kimhae, Changnyong, Sacheon and Chinju areas except for Haman area. The BOD values of surface water exceeded water quality standard for agriculture(8.0mg/l) in three sites and one site in Haman and Sacheon, respectively. The COD values of surface water exceeded water quality standard for agriculture(8.0mg/l) in Kimhae, Changnyong and Haman. The ${NH_4}^+-N$ values in surface water of Changnyong and Haman areas were 1.21mg/l and 2.75mg/l, respectively. The average values of $NO_3\;^--N$ in surface water was appropriate for agriculture. The values of $K^+,\;Na^+,\;Mg^{2+},\;Ca^{2+},\;{PO_4}^{3-}$ and $SO_4^{2-}$ in Haman were the highest of those of the others. And Pb was below 0.1mg/l which was water quality standard for agriculture. The average values of Cu, Cd and Zn were below water quality standard for agriculture. Between COD and SS in surface water was positively correlated with r$=0.799^{{\ast}{\ast}}$. BOD in surface water was positively correlated with $NH_4\;^+-N,\;PO_4\;^{3-},\;SS,\;K^+,\;Na^+$ and $Cl^-$. Surface water pollution status of agricultural water source of greenhouse areas in Gyeongnam was in order of Chinju< Sacheon< Kimhae< Changnyong< Haman area.

  • PDF

Mineralization of Cattle Manure Compost at Various Soil Moisture Content (우분퇴비 시용후 토양수분 조절에 따른 질소 및 탄소의 전환)

  • Kim, P.J.;Chung, D.Y.;Chang, K.W.;Lee, B.L.
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.4
    • /
    • pp.295-303
    • /
    • 1997
  • To investigate the transformation characteristics of nitrogen and carbon from cow manure compost amended in soil under different moisture conditions, dynamics of nitrogen and carbon were determined periodically for 15 weeks of aerobic incubation at room temperature during July${\sim}$November, 1996. Cow manure compost matured with mixing saw dust was amended with the 4 ratios (0, 2, 4, 6%(wt/wt)) in Ap horizon soil, which collected from green house in Yesan, Chungnam. Moisture was controlled with 0.2, 0.3, 0.4, and 0.5 of mass water conte nt (${\theta}$m) to air dried soil, and water loss was compensated at every sampling. During incubation, soil pH was decreased continuously, that was caused by hydrogen generated from nitrification of ammonium nitrogen. And pH became higher with inclining cow manure compost amendment and water treatment, that meaned the increase of mineralization of organic-N to $NH_4\;^+-N$. Total nitrogen was reduced with increasing water content, but total carbon showed the contrast tendency with that of nitrogen. Therefore, C/N ratio slightly decreased in the low water condition (${\theta}$m 0.2) during incubation, but increased continuously in high water condition over ${\theta}$m 0.4. As a result, it was assumed that soil fertility is able to be reduced in the high water content over available water content. Nitrate transformation rate increased lasting in the low water content less than ${\theta}$m 0.3. Itdropped significantly in the first $2{\sim}3$ weeks of incubation over ${\theta}$m 0.4. In particular, nitrate was not detected in ${\theta}$m 0.5 of water content after the first $2{\sim}3$ weeks. In contrast, ammonium transformation was inclined with increasing water treatment. Nitrogen mineralization rate, which calculated with percentage ratio of (the sum of ex.$NH_4\;^+-N$ and $NO_3\;^--N$)/total nitrogen, was continuously increased in the low water content of ${\theta}$m 0.2 and 0.3. But it saw the different patterns in high water content over ${\theta}$m 0.4 that was drastically declined in the initial stage and then gradually inclined . From the above results, nitrogen transformation patterns differentiated decisively in water content between ${\theta}$m 0.3 and 0.4 in soil. Thus, it is very important for the maintain of suitable soil water content to enhance fertility of soil amended with manure compost. However, excess treatment of manure compost might enhance the possibility of contamination of small watershed and ground water around agricultural area.

  • PDF

Effect of Supplementary Radiation on Growth of Greenhouse-Grown Kales (온실재배 케일의 생장에 미치는 보광효과)

  • Heo, Jeong-Wook;Kim, Hyeon-Hwan;Lee, Kwang-Jae;Yoon, Jung-Boem;Lee, Joung-Kwan;Huh, Yoon-Sun;Lee, Ki-Yeol
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.1
    • /
    • pp.38-45
    • /
    • 2015
  • BACKGROUND: For commercial production of greenhouse crops under shorter day length condition, supplementary radiation has been usually achieved by the artificial light source with higher electric consumption such as high-pressure sodium, metal halide, or incandescent lamps. Light-Emitting Diodes (LEDs) with several characteristics, however, have been considered as a novel light source for plant production. Effects of supplementary lighting provided by the artificial light sources on growth of Kale seedlings during shorter day length were discussed in this experiment. METHODS AND RESULTS: Kale seedlings were grown under greenhouse under the three wave lamps (3 W), sodium lamps (Na), and red LEDs (peak at 630 nm) during six months, and leaf growth was observed at intervals of about 30 days after light exposure for 6 hours per day at sunrise and sunset. Photosynthetic photon flux (PPF) of supplementary red LEDs on the plant canopy was maintained at 0.1 (RL), 0.6 (RM), and $1.2(RH){\mu}mol/m^2/s$ PPF. PPF in 3 W and Na treatments was measured at $12{\mu}mol/m^2/s$. Natural light (NL) was considered as a control. Leaf fresh weight of the seedlings was more than 100% increased under the 3 W, Na and RH treatment compared to natural light considering as a conventional condition. Sugar synthesis in Kale leaves was significantly promoted by the RM or RH treatment. Leaf yield per $3.3m^2$ exposed by red LEDs of $1.2{\mu}mol/m^2/s$ PPF was 9% and 16% greater than in 3W or Na with a higher PPF, respectively. CONCLUSION: Growth of the leafy Kale seedlings were significantly affected by the supplementary radiation provided by three wave lamp, sodium lamp, and red LEDs with different light intensities during the shorter day length under greenhouse conditions. From this study, it was suggested that the leaf growth and secondary metabolism of Kale seedlings can be controlled by supplementary radiation using red LEDs of $1.2{\mu}mol/m^2/s$ PPF as well as three wave or sodium lamps in the experiment.

Mobility of pesticides in different slopes and soil collected from Ganwon alpine sloped-land under simulated rainfall conditions (실내 인공강우를 이용한 강원도 고랭지 토양의 토성 및 경사도별 농약 이동특성)

  • Kim, Seong-Soo;Kim, Tae-Han;Lee, Sang-Min;Park, Dong-Sik;Zhu, Yong-Zhe;Hur, Jang-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.4
    • /
    • pp.316-329
    • /
    • 2005
  • Mobility of pesticides can be occurred by run-off and leachate or soil erosion. It is one of the most important factors for environmental contamination, particularly in steep sloped-land as Gangwon alpine region. In this study, the mobility of seven pesticides in different slopes and soil textures was investigated by simulated rainfall under controlled conditions. Simulated rainfall subjected to 60 mm $hr^{-1}$ was treated using rainfall simulator after 12 hr of pesticide treatment. Amounts of the pesticides were measured in run-off and leachate samples. The soil samples collected after rainfall from upper and lower parts and three different depths of sloped-plot were also analyzed. At result, all pesticides from the un-off samples collected from Taebaek(silty clay loam) and Heongseong(sandy loam) soils were detected maximum 96% within 60 minutes after first collection except carbendazim and cypermethrin which have the lowest water solubilities. From the leachate samples, a similar pattern was shown as run-off samples but amount of pesticides was lower than those of run-off samples. In soil samples, the order of the amount of pesticide residues was $0{\sim}5$ > $5{\sim}10$ > $10{\sim}15$ cm of soil depth and no pattern was shown in upper and lower, and different slopes. Comparing to mobility of pesticides in water and soil samples, pesticides in soil samples were higher than those of water samples in Taebaek soil. However, the results using Heongseong soils were in contrast to those of Taebaek soil. These results revealed that mobility of pesticides can be dependant mainly on soil textures and physicochemical properties of pesticides. Therefore, it can be suggested that selection of pesticides should be considered for soil texture and properties of pesticide in the alpine and sloped-land.

Monitoring and Exposure Assessment of Pesticide Residues in Domestic Agricultural Products (국내 유통 다소비 농산물의 잔류농약 모니터링 및 노출평가)

  • Kang, Namsuk;Kim, Seongcheol;Kang, Yoonjung;Kim, Dohyeong;Jang, Jinwook;Won, Sera;Hyun, Jaehee;Kim, Dongeon;Jeong, Il-Yong;Rhee, Gyuseek;Shin, Yeongmin;Joung, Dong Yun;Kim, Sang Yub;Park, Juyoung;Kwon, Kisung;Ji, Youngae
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.1
    • /
    • pp.32-40
    • /
    • 2015
  • This study was implemented to evaluate food safety on residual pesticides in agricultural products of Korea and to use as a data base for the establishment of food policy. A total of 196 pesticide upon these products were analyzed using multi class pesticide multiresidue methods of Korean Food Code, and 232 samples of 15 agricultural products collected from 9 regions were supplied for this study. In the results, 64 kinds of pesticides were detected in 53 samples, chlorpyrifos and procymidone of them were shown a high frequency of detection in the analyzed pesticides. Among them, two samples (chlorpyrifos in perilla leaves and picoxystrobin in peach) were detected over Maximum Residue Limits (MRLs). The levels of the detected pesticide residues were within safe levels. Also, the intake assessment for pesticide residues including chlorpyrifos at multi pesticide residue monitoring were carried out. The result showed that the ratio of EDI (estimated daily intake) to ADI (acceptable daily intake) was 0.001~0.902% which means that the detected pesticide residues were in a safe range so that residual pesticides in the agricultural products in Korea are properly controlled.

Characteristics of Tillering as Affected by Temperature Variation in Dasanbyeo, a Indica/Japonica High Yielding Rice Cultivar (온도 수준에 따른 다수성 벼 품종 ″다산벼″의 분얼 특성)

  • 김덕수;양원하;신진철;류점호
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.1
    • /
    • pp.22-29
    • /
    • 2001
  • In Korean high yielding varieties developed by crosses between indica and japonica rice, the most limiting factor for yield may be attributed to the less number of the tillers in the unit area. The goals of this study is to find out the effect of the temperature factors as well as cultural practices on the development and increase of tillers of Dasanbyeo, the high yielding indica crossed japonica cultivar. The effect of temperature was examined under controlled phytotron condition with 6 levels of temperature, 15, 17, 19, 22, 24 and 26$^{\circ}C$, respectively, For the experiment, the leading japonica variety in Korea, Hwaseongbyeo, was used for the check cultivar for the comparison with Dasanbyeo. The high temperature also accelerated the initiation and termination of tiller development. The cultivar difference in the speed of tiller development was observed, for example, more rapid development of tiller in Dasanbyeo than in Hwaseongbyeo was observed at the high temperature range of 24-26$^{\circ}C$, while the vice versa phenomena was observed at lower temperature range of 17-22$^{\circ}C$. The first secondary tiller of Dasanbyeo was observed on the 16, 17, 23, 27 and 38 days after transplanting (DAT) at 26$^{\circ}C$, 24$^{\circ}C$, 22$^{\circ}C$, 19$^{\circ}C$, and 17$^{\circ}C$, respectively. Those of Hwaseongbyeo was 19-22, and 26 DAT at 19-26$^{\circ}C$ and 17$^{\circ}C$, respectively. The last effective tiller of Dasanbyeo was observed on 27-33 DAT for the primary tiller, 20-41 DAT for the secondary tiller. Those of Hwaseongbyeo were 23-40 DAT for primary tiller, and 24-40 DAT for the secondary tiller, and 24-40 DAT for the secondary tiller.

  • PDF