A catchment modelling system is the summation of the numerous hydrologic, hydraulic and other process models necessary to simulate the response of a catchment to a storm event. Differences between the recorded catchment response and that predicted by a catchment modelling system can arise from structural errors within the catchment modelling system, evaluation errors in the control parameters, or measurement errors in the recorded data being used to assess the reliability of the evaluation of the control parameters. Presented herein is an investigation of the potential measurement errors within the recorded information, which was considered to occur from instrument error in the ultra sonic flow monitor. This investigation was undertaken using three available rating curves at the Musgrave Avenue Stormwater System in Centennial Park, Sydney, developed by Abustan (1997), Water Board (1994), and using Manning's equation.
This paper presents digital microflow controllers(DMFC), where a fluidic digital-to-analog converter(DAC) is used to achieve high-linearity, fine-level flow control for applications to precision biomedical dosing systems. The fluidic DAC, composed of binary-weighted flow resistance, controls the flow-rate based on the ratio of the flow resistance to achieve high-precision flow-rate control. The binary-weighted flow resistance has been specified by a serial or a parallel connection of an identical flow resistor to improve the linearity of the flow-rate control, thereby making the flow-resistance ratio insensitive to the size uncertainty in flow resistors due to micromachining errors. We have designed and fabricated three different types of 4-digit DMFC: Prototype S and P are composed of the serial and the parallel combinations of an identical flow resistor, while Prototype V is based on the width-varied flow resistors. In the experimental study, we perform a static test for DMFC at the forward and backward flow conditions as well as a dynamic tests at pulsating flow conditions. The fabricated DMFC shows the nonlinearity of 5.0% and the flow-rate levels of 16(2$^{N}$) for the digital control of 4(N) valves. Among the 4-digit DMFC fabricated with micromachining errors, Prototypes S and P show 27.2% and 27.6% of the flow-rate deviation measured from Prototype V, respectively; thus verifying that Prototypes S and P are less sensitive to the micromachining error than Prototype V.V.
The protocol conformance testing is to check whether an implementation of a protocol conforms to its specification. And it is important to improve the interoperability of protocol and the efficiency of cost. In general, protocol is composed of the control flow representing observable behaviors and the data flow representing internally used variables. Until now, research for generation of test suite has been realized only consideration the control flow of protocol or separation control flow from data flow. Case of considering control flow, contents of test was simple and definite. Length of test was short. But it was of little application, and it didn't manage each kind errors in data flow. Therefore, we must generate test case that can manage control and data flow. So, anomaly of variable must be removed for efficient conformance testing. Therefore in this dissertation, we proposed algorithm which can remove anomaly of variable for efficient conformance testing. And it showed that anomaly of variable was got rid of applying this algorithm to real protocol.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권1호
/
pp.396-413
/
2017
Dynamically checking the integrity of software at run-time is always a hot and difficult spot for trusted computing. Control-flow integrity is a basic and important safety property of software integrity. Many classic and emerging security attacks who introduce illegal control-flow to applications can cause unpredictable behaviors of computer-based systems. In this paper, we present a software-based approach to checking violation of control flow integrity at run-time. This paper proposes a high-performance and low-overhead software control flow checking solution, control flow checking at virtual edges (CFCVE). CFCVE assigns a unique signature to each basic block and then inserts a virtual vertex into each edge at compile time. This together with insertion of signature updating instructions and checking instructions into corresponding vertexes and virtual vertexes. Control flow faults can be detected by comparing the run-time signature with the saved one at compile time. Our experimental results show that CFCVE incurs only 10.61% performance overhead on average for several C benchmark programs and the average undetected error rate is only 9.29%. Compared with previous techniques, CFCVE has the characteristics of both high fault coverage and low memory and performance overhead.
Control flow errors are caused by the vulnerability of memory and result in system failure. Signature-based control flow monitoring is a representative method for alleviating the problem. The method commonly consists of two routines; one routine is signature update and the other is signature verification. However, in the existing signature-based control flow monitoring, monitoring target application is tightly combined with the monitoring code, and the operation of monitoring in a single thread is the basic model. This makes the signature-based monitoring method difficult to expect performance improvement that can be taken in multi-thread and multi-core environments. In this paper, we propose a new signature-based control flow monitoring model that separates signature update and signature verification in thread level. The signature update is combined with application thread and signature verification runs on a separate monitor thread. In the proposed model, the application thread and the monitor thread are separated from each other, so that we can expect a performance improvement that can be taken in a multi-core and multi-thread environment.
Industrial Steam Turbine first stage shell pressure is related to throttle flow. Theoretically, first stage shell pressure could, therefore, be measured and used as an index of turbine throttle flow. However, accurate flow measurements show that this pressure is not a reliable index of the actual flow. Data analysis of steam turbinessubjected to ASME acceptance tests shows that the use of first stage shell pressure as an index of throttle flow produced errors as large as 9.6 %. The mean of the errors was +2.2% with a standard deviation of ${\pm}$2.8 %. Applications that require an accuratedetermination of turbine steam flow, such as turbine acceptance testing, should, therefore, not rely on this method. Therefore, First stage shell pressure measurement serves as a valid and economical indicator of turbine throttle flow in cases where a high degree of accuracy in throttle flow measurement is not required but repeatability is desired, such as for boiler control. Generally speaking, Steam turbine first stage shell pressure may also be a very useful monitor of turbine performance when used with certain other turbine measurements.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권5호
/
pp.1829-1846
/
2021
Transient faults occur in computation units of a processor, which can cause control flow errors (CFEs) and compromise system reliability. The software-based methods perform illegal control flow detection by inserting redundant instructions and monitoring signature. However, the existing methods not only have drawbacks in terms of performance overhead, but also lack of configurability. We propose a configurable approach CCFCA for detecting CFEs. The configurability of CCFCA is implemented by analyzing the criticality of each region and tuning the detecting granularity. For critical regions, program blocks are divided according to space-time overhead and reliability constraints, so that protection intensity can be configured flexibly. For other regions, signature detection algorithms are only used in the first basic block and last basic block. This helps to improve the fault-tolerant efficiency of the CCFCA. At the same time, CCFCA also has the function of solving confusion and instruction self-detection. Our experimental results show that CCFCA incurs only 10.61% performance overhead on average for several C benchmark program and the average undetected error rate is only 9.29%. CCFCA has high error coverage and low overhead compared with similar algorithms. This helps to meet different cost requirements and reliability requirements.
We present a novel flow-rate independent cell counter using a fixed control volume between double electrical sensing zones. The previous device based on the single electrical cell sensing in a given flow-rate requires an accurate fluid volume measurement or precision flow rate control. The present cell counter, however, offers the flow-rate independent method for the cell concentration measurement with counting cells in a fixed control volume of $22.9{\pm}0.98{\mu}{\ell}$. In the experimental study, using the RBC (Red Blood Cell), we have compared the measured RBC concentrations from the fabricated devices with those from Hemacytometer. The previous and present devices show the maximum errors of $20.3\%\;and\;16.1\%$, which are in the measurement error range of Hemacytometer (about $20\%$). The present device also shows the flow-rate independent performance at the constant flow-rates ($5{\mu}{\ell}/min$ and $10{\mu}{\ell}/min$) and the varying flow-rate (4, 2, and $4{\mu}{\ell}/min$). Therefore, we demonstrate that the present cell counter is a simple and automated method for the cell concentration measurement without requiring an accurate fluid measurement and precision flow-rate control.
In industrial control systems, flow measurement is a very important issue. It is frequently needed to calculate how much total fluid or gas flows through a cross-section. Flow volume measurement tools use simple sampling or rectangle methods. Actually, flow volume measurement process is an integration process. For this reason, measurement systems using instantaneous sampling technique cause considerably high errors. In order to make more accurate flow measurement, numerical integration methods should be used. Literally, for numerical integration method, Rectangular, Trapezoidal, Simpson, Romberg and Gaussian Quadrature methods are suggested. Among these methods, trapezoidal rule method is quite easy to calculate and is notably more accurate and contains no restrictive conditions. Therefore, it is especially convenient for the portable flow volume measurement systems. In this study, the volume measurement of air which is flowing through a cross-section is achieved by using PLC ladder diagram. The measurements are done using two different approaches. Trapezoidal rule method is proposed to measure the flow sensor signal to minimize measurement errors due to the classical sampling method as a different approach. It is concluded that the trapezoidal rule method is more effective than the classical sampling.
본 논문에서는 후향계단 유동장 모델링 및 복원오차를 분석한다. 유동장의 밀도를 POD(Proper Orthogonal Decomposition) 기법을 통해 공간모드와 시간모드로 추출하여 수학적으로 모델링한다. 모델링 오차를 정립하여 유동에너지와 오차 사이의 관계를 정리한다. 모델링 오차를 시간영역 뿐만 아니라 주파수 영역에서의 분석을 통하여 제어측면에서 오차의 한계를 규정한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.