• Title/Summary/Keyword: Control timing

Search Result 825, Processing Time 0.024 seconds

Derivation of the Timing Constraints for Multi-Sampled Multitasks in a Real-Time Control System (다중샘플링 다중작업을 수행하는 실시간제어시스템의 시계수제한성 유도)

  • 이대현;김학배
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.145-150
    • /
    • 1999
  • A real-time control system, composed of the controlled processor and the controller computer(s), may have a variety of task types, some of which have tight timing-constraints in generating the correct control input. The maximum period of those task failures tolerable by the system is called the hard deadline, which depends on not only fault characteristics but also task characteristics. In the paper, we extend a method deriving the hard deadline in LTI system executing single task. An algorithm to combine the deadlines of all the elementary tasks in the same operation-mode is proposed to derive the hard deadline of the entire system. For the end, we modify the state equation for the task to capture the effects of task failures (delays in producing correct values) and inter-correlation. We also classify the type of executing the tasks according to operation modes associated with relative importance of correlated levels among tasks, into series, parallel, and cascade modes. Some examples are presented to demonstrate the effectiveness of the proposed methods.

  • PDF

Development of Electronic Control Fuel Injection and Spark Timing Controller for Automobile Engine (자동차 기관용 전자제어 연료분사 및 점화시기 제어기 개발)

  • Kim, T.H.;Min, G.S.;Yang, S.H.;Jang, H.S.
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.4
    • /
    • pp.22-35
    • /
    • 1995
  • In this paper, an electronic control unit is developed using 16bit microcomputer for automobile engine. This system incorporate AFS(Air Flow Sensor) of Hot Wire type, DIS(Direct Ignition System), ISC(Idle Speed Control) system, CAS(Cranke Angle Sensor) and other peripheral device. This system includes hardware and software to facilitate precision control of both fuel injection and ignition timing. Especially, this controller consists of position signal(180 teeth) and 4 REF signals. Present system has maximum $720^{\circ}CA$ delay. But this system has maximum $180^{\circ}CA$. Thus, this system is able to precision control both fuel injection and ignition timing.

  • PDF

Effect of Controlling Exhaust Valve Timing on Engine Efficiency in LIVC and EIVC States in a 2-Cylinder Small Turbo Gasoline Engine (2기통 소형 터보가솔린엔진에서 배기 밸브 타이밍 제어에 따른 LIVC, EIVC 상태에서의 엔진 효율 영향)

  • Jang, Jinyoung;Woo, Youngmin;Shin, Youngjin;Ko, Ahyun;Jung, Yongjin;Cho, Chongpyo;Kim, Gangchul;Pyo, Youngdug;Han, Myunghoon
    • Journal of ILASS-Korea
    • /
    • v.27 no.3
    • /
    • pp.117-125
    • /
    • 2022
  • This study examines whether engine fuel efficiency is improved by optimization of the exhaust valve timing in a state where the intake valve timing has been optimized in a small turbo gasoline engine that has intake cams and exhaust cams with fixed valve opening periods. When the exhaust valve is opened late, the expansion stroke is longer, and the efficiency can be improved. A 2-cylinder turbo gasoline engine with 0.8 liters of displacement and an MPI (Multi Point Injection) fuel system was used. The engine was operated at 1,500 and 3,000 rpm, and the load conditions included a partial load of 50 N·m and a high load of 70 N·m. Data was recorded as the exhaust valve timing was controlled, and this was used to calculate the efficiency of combustion using a heat release, the fuel conversion efficiency, and the pumping loss. Results and the hydrocarbon concentrations in the exhaust gas were compared for each condition. Experiment results confirmed that additional fuel efficiency improvements are possible through exhaust valve timing control at 1,500 rpm and 50 N·m. However, in other operating conditions, fuel efficiency improvements could not be obtained through exhaust valve timing control because cases where the pumping loss and fuel/air mixture slip increased when the exhaust valve timing changed and the fuel efficiency declined.

The Effects of Intake Swirl Flow en Lean Combustion in an Sl Engine (흡입 스월유동이 Sl기관의 희박연소에 미치는 영향)

  • 정구섭;전충환;장영준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1298-1307
    • /
    • 2001
  • Recently, the efforts to improve fuel economy and to reduce pollutant emission have become the main subject in the development of a gasoline engine. A lean combustion engine admitted as the best alternative is relatively lower fuel consumption rate and exhaust emissions. In this study, it is focused on intensifying intake flow field as one of methods to improve the performance of the lean combustion. First, three different types of suitable swirl control valve(SC7) with high swirl and tumble ratio are selected through steady flow experiment, being installed in a spark ignition engine. The relationship between lean misfire limit and torque was investigated with injection timing and spark ignition timing. Also, the effect of intensified swirl new on the combustion Stability and exhaust emissions was experimently examined by the measuring in-cylinder pressure and combustion variation. The results show that the engine with swirl control calve is superior to other conventional engine on the lean misfire limit, specific torque, combustion variation and emission, and the appropriate injection timing and spark ignition timing exist according to the type of swirl control valve.

  • PDF

Synthesizing multi-loop control systems with period adjustment and Kernel compilation (주기 조정과 커널 자동 생성을 통한 다중 루프 시스템의 구현)

  • Hong, Seong-Soo;Choi, Chong-Ho;Park, Hong-Seong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.2
    • /
    • pp.187-196
    • /
    • 1997
  • This paper presents a semi-automatic methodology to synthesize executable digital controller saftware in a multi-loop control system. A digital controller is described by a task graph and end-to-end timing requirements. A task graph denotes the software structure of the controller, and the end-to-end requirements establish timing relationships between external inputs and outputs. Our approach translates the end-to-end requirements into a set of task attributes such as task periods and deadlines using nonlinear optimization techniques. Such attributes are essential for control engineers to implement control programs and schedule them in a control system with limited resources. In current engineering practice, human programmers manually derive those attributes in an ad hoc manner: they often resort to radical over-sampling to safely guarantee the given timing requirements, and thus render the resultant system poorly utilized. After task-specific attributes are derived, the tasks are scheduled on a single CPU and the compiled kernel is synthesized. We illustrate this process with a non-trivial servo motor control system.

  • PDF

A Co-simulation Toolbox for Distributed Real-Time Control System (분산형 실시간 제어시스템을 위한 연계 모의실험에 관한 연구)

  • 김승훈;이우택;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.166-171
    • /
    • 2003
  • This paper presents the algorithms and Matlab Toolbox for co-simulation of distributed real-time control system based on OSEK-OS and CAN protocol. This toolbox enables the developers to analyze the timing uncertainty, which is caused by resource sharing including shared memories and networks, and to take the timing uncertainty into consideration in the early design phase. Furthermore, this toolbox helps the developers to model the behaviors of a control system by providing graphical user interface for objects of OSEK-OS and CAN. To prove the feasibility of this toolbox, a vehicle body network system is modeled with this toolbox, and the timing uncertainties are analyzed.

Intelligent Support System for Power System Operators: Decision Making for Wash Timing of Polluted Insulators

  • Taniguchi, Tatsuro;Goto, Satoru;Nakamura, Masatoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.165-168
    • /
    • 1999
  • The support or automation of various kinds of intelligent work is urged at large, integrated control centers. Given this demand, a decision making system for wash timing of polluted insulators, applying the Bayesian rule theory, has been developed in order to support maintenance work in the power system. The results of this system application revealed that exact wash timing of the insulators could be determined automatically, equivalent in precision to judgement by skilled operators, thus contributing to further work efficiency.

  • PDF

Digital Positioning Control of Pneumatic Cylinder System with Elastic and Viscous Load (탄성 및 점성 부하시 공기압 실린더 시스템의 디지털 위치 제어)

  • 박명관;문영진;편창관
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.137-144
    • /
    • 1998
  • For a model system consisted of four pneumatic cylinders with strokes of 10, 20, 40 and 80 mm, investigation was carried out experimentally and numerically about the reliability of system with elastic and viscous load. The elastic load affects the performance of each cylinder in cylinder series, and changes the time lag and the velocity of the piston which makes the positioning control rather difficult. Taking the effects of the elastic load into consideration, positioning can be carried out comparatively smoothly by only adjusting the driving timing. The effect of a viscous load reduces the vibration of each moving body in the cylinder series and also reduces the over-travelled distance which happens when several cylinders move at the same time. For reasons, a positioning with a viscous load can be relatively smoothly carried out even without the timing control.

  • PDF

A Study of the Control Logic Development of Driveability Improvement in Vehicle Acceleration Mode (차량 급가속시 운전성 향상을 위한 제어로직 개선에 관한 연구)

  • 최윤준;송해박;이종화;조한승;조남효
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.101-116
    • /
    • 2002
  • Modern vehicles require a high degree of refinement, including good driveability to meet customer demands. Vehicle driveability, which becomes a key decisive factor for marketability, is affected by many parameters such as engine control and the dynamic characteristics in drive lines. Therefore, Engine and drive train characteristics should be considered to achieve a well balanced vehicle response simultaneously. This paper describes analysis procedures using a mathematical model which has been developed to simulate spark timing control logic. Inertia mass moment, stiffness and damping coefficient of engine and drive train were simulated to analyze the effect of parameters which were related vehicle dynamic behavior. Inertia mass moment of engine and stiffness of drive line were shown key factors for the shuffle characteristics. It was found that torque increase rate, torque reduction rate and torque recovery timing and rate influenced the shuffle characteristics at the tip-in condition for the given system in this study.

Controller Scheduling and Performance Analysis for Multi-Motor Control (다중 모터 제어를 위한 제어기 스케쥴링 및 성능 분석)

  • Kwon, Jae-Min;Lee, Kyung-Jung;Ahn, Hyun-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.6
    • /
    • pp.71-77
    • /
    • 2015
  • In this paper, we propose a scheduling method for signal measurement and control algorithm execution in a multi-motor drive controller. The multi-motor controller which is used for vehicle control receives position/velocity command and performs position/velocity control and current control. Internal resource allocation and control algorithm execution timing are very important when one microcontroller is used for multi-motor drives. The control performance of the velocity control system is verified by varying ADC(Analog to Digital Converter) conversion timing and algorithm execution timing using real experiments.