• Title/Summary/Keyword: Control rod assembly

Search Result 45, Processing Time 0.02 seconds

Drop Time Evaluation for SMART Control Rod Assembly (스마트 제어봉집합체의 낙하시간 평가)

  • Kim, Kyoung-Rean;Jang, Ki-Jong;Park, Jin-Seok;Lee, Won-Jae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.2
    • /
    • pp.25-28
    • /
    • 2011
  • The control rod assemblies do freely fall into the reactor core by the gravity from the control rod drive mechanism. In order to achieve a rapid shutdown and control the reactor power, it is required to insert control rod assemblies as soon as possible. In this paper, we evaluated the drop time and flow characteristics caused around guide tube for SMART(System-integrated modular advanced reactor) control rod assembly. Numerical analyses are carried out with FLUENT program of computational fluid dynamics. This study results show that the drop time of the control rod assembly in the operating condition of SMART is more 20 percent rapidly than the drop time of the room temperature and ambient atmosphere condition.

Influence of design modification of control rod assembly for Prototype Generation IV Sodium-cooled Fast Reactor on drop performance

  • Son, Jin Gwan;Lee, Jae Han;Kim, Hoe Woong;Kim, Sung Kyun;Kim, Jong Bum
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.922-929
    • /
    • 2019
  • This paper presents the drop performance test of the control rod assembly which is one of the main components strongly related to the safety of the prototype generation IV sodium-cooled fast reactor. To investigate the drop performance, a real-sized control rod assembly that was recently modified based on the drop analysis results was newly fabricated, and several free drop tests under different flow rate conditions were carried out. Then the results were compared with those obtained from the previous tests conducted on the conceptually designed control rod assembly to demonstrate the improvement in performance. Moreover, the drop performance tests under several types and magnitudes of seismic loadings were also conducted to investigate the effect of the seismic loading on the drop performance of the modified control rod assembly. The results showed that the effects of the type and magnitude of the seismic loading on the drop performance of the modified control rod assembly were not significant. Also, the drop time requirement was successfully satisfied, even under the seismic loading conditions.

Drop Performance Test of Conceptually Designed Control Rod Assembly for Prototype Generation IV Sodium-Cooled Fast Reactor

  • Lee, Young-Kyu;Lee, Jae-Han;Kim, Hoe-Woong;Kim, Sung-Kyun;Kim, Jong-Bum
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.855-864
    • /
    • 2017
  • The control rod assembly controls reactor power by adjusting its position during normal operation and shuts down chain reactions by its free drop under scram conditions. Therefore, the drop performance of the control rod assembly is important for the safety of a nuclear reactor. In this study, the drop performance of the conceptually designed control rod assembly for the prototype generation IV sodium-cooled fast reactor that is being developed at the Korea Atomic Energy Research Institute as a next-generation nuclear reactor was experimentally investigated. For the performance test, the test facility and test procedure were established first, and several free drop performance tests of the control rod assembly under different flow rate conditions were then carried out. Moreover, performance tests under several types and magnitudes of seismic loading conditions were also conducted to investigate the effects of seismic loading on the drop performance of the control rod assembly. The drop time of the conceptually designed control rod assembly for 0% of the tentatively designed flow rate was measured to be 1.527 seconds, and this agrees well with the analytically calculated drop time. It was also observed that the effect of seismic loading on the drop time was not significant.

CFD Analysis to Estimate Drop Time and Impact Velocity of a Control Rod Assembly in the Sodium Cooled Faster Reactor (소듐냉각고속로 제어봉집합체의 낙하시간 및 충격속도 예측을 위한 CFD 해석)

  • Kim, JaeYong;Yoon, KyungHo;Oh, Se-Hong;Ko, SungHo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.5-11
    • /
    • 2015
  • In a pressurized water reactor (PWR), control rod assembly (CRA) falls into the guide tubes of a fuel assembly due to gravity for scram. Various theoretical approaches and numerical analyses have been performed because its shape is simple and its design was completely developed several decades ago. A control rod assembly for a sodium-cooled faster reactor (SFR) which is geometrically more complicated is being actively developed in Korea nowadays. Drop time and impact velocity of a CRA are important parameters with respect to reactivity insertion time and the mechanical robustness of a CRA and a guide duct. In this paper, computational method considering simultaneously the equation of motion for rigid body and the Navier-Stokes equations for fluid is suggested and verified by comparison with theoretical analysis results. Through this valuable CFD analysis method, drop time and impact velocity of initially designed SFR CRA are evaluated before performing scram tests with it.

Sensitivity of a control rod worth estimate to neutron detector position by time-dependent Monte Carlo simulations of the rod drop experiment

  • Jong Min Park;Cheol Ho Pyeon;Hyung Jin Shim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.916-921
    • /
    • 2024
  • The control rod worth sensitivity to the neutron detector position in the rod drop experiment is studied by the time-dependent Monte Carlo (TDMC) neutron transport calculations for AGN-201K educational reactor and the Kyoto University Critical Assembly. The TDMC simulations of the rod drop experiments are conducted by the Seoul National University Monte Carlo (MC) code, McCARD, yielding time-dependent neutron densities at detector positions. The detector-position-dependent results of the total control rod worth calculated by the extrapolation, the integral counting, and the inverse methods are compared with the numerical reference using the MC eigenvalue calculations and the experimental results. From these comparisons, it is observed that the total control rod worth can be estimated with a considerable difference depending on the detector position through the rod drop experiment. The proposed TDMC simulation of the rod drop experiment can be applied for searching a better detector position or quantifying a bias for the control rod worth measurement.

Integrity Evaluation of Control Rod Assembly for Sodium-Cooled Fast Reactor due to Drop Impact (낙하충격에 의한 소듐냉각고속로 제어봉집합체의 건전성 평가)

  • Lee, Hyun Seung;Yoon, Kyung Ho;Kim, Hyung Kyu;Cheon, Jin Sik;Lee, Chan Bock
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.233-239
    • /
    • 2017
  • The CA (Control Assembly) of an SFR has a CRA(Control Rod Assembly) with an inner duct and control rod. During an emergency situation, the CRA falls into the duct of the CA for a rapid shut-down. The drop time and impact velocity of the CRA are important parameters with respect to the reactivity insertion time and the structural integrity of the CRA. The objective of this study was to investigate the dynamic behavior and integrity of the CRA owing to a drop impact. The impact analysis of the CRA under normal/abnormal drop conditions was carried out using the commercial FEM code LS-DYNA. Results of the drop impact analysis demonstrated that the CRA maintained structural integrity, and could be safely inserted into the flow hole of the damper under abnormal conditions.

Experimental evaluation of fuel rod pattern analysis in fuel assembly using Yonsei single-photon emission computed tomography (YSECT)

  • Choi, Hyung-joo;Cheon, Bo-Wi;Baek, Min Kyu;Chung, Heejun;Chung, Yong Hyun;You, Sei Hwan;Min, Chul Hee;Choi, Hyun Joon
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.1982-1990
    • /
    • 2022
  • The purpose of this study was to verify the possibility of fuel rod pattern analysis in a fresh fuel assembly using the Yonsei single-photon emission computed tomography (YSECT) system. The YSECT system consisted of three main parts: four trapezoidal-shaped bismuth germanate scintillator-based 64-channel detectors, a semiconductor-based multi-channel data acquisition system, and a rotary stage. In order to assess the performance of the prototype YSECT, tomographic images were obtained for three representative fuel rod patterns in the 6 × 6 array using two representative image-reconstruction algorithms. The fuel-rod patterns were then assessed using an in-house fuel rod pattern analysis algorithm. In the experimental results, the single-directional projection images for those three fuel-rod patterns well discriminated each fuel-rod location, showing a Gaussian-peak-shaped projection for a single 10 mm-diameter fuel rod with 12.1 mm full-width at half maximum. Finally, we successfully verified the possibility of the fuel rod pattern analysis for all three patterns of fresh fuel rods with the tomographic images obtained by the rotational YSECT system.

Drop Performance Test of Control Rod Assembly for Prototype Gen-IV Sodium-cooled Fast Reactor (PGSFR 제어봉집합체 낙하성능시험)

  • Lee, Young Kyu;Kim, Hoe Woong;Lee, Jae Han;Koo, Gyeong Hoi;Kim, Jong Bum;Kim, Sung Kyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.134-140
    • /
    • 2016
  • The Control Rod Assembly (CRA) controls the reactor power by adjusting its position in the reactor core during normal operation and should be quickly inserted into the reactor core by free drop under scram condition to shut down chain reactions. Therefore, the drop time of the CRA is one of important factors for the safety of the nuclear reactor and must be experimentally verified. This study presents the drop performance test of the CRA which has been conceptually designed for the Proto-type Generation IV Sodium-cooled Fast Reactor. During the test, the CRA was free dropped from a height of 1 m under different flow rate conditions and its drop time was measured. The results showed that the drop time of the CRA increased as the flow rate increased; the average drop times of the CRA were approximately 1.527 seconds, 1.599 seconds and 1.676 seconds at 0%, 100% and 200% of design flow rates, respectively.

The Method of safe double holding by detecting movements of Control Rod Drive Mechanism (원자로 제어봉구동장치의 동작 검출을 통한 안전한 이중유지 방법)

  • Cheon, Jong-Min;Kinm, Choon-Kyung;Lee, Jong-Moo;Park, Min-Kook;Kwon, Soon-Man
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2655-2657
    • /
    • 2005
  • When a fault relating to the urgent alarm occurs, we must prevent control rods from dropping and make one of two grippers in Control Rod Drive Mechanism (CRDM) grip the drive rod taking a control rod assembly. To enhance the reliability of holding control rods, we order two grippers to hold the drive rod. This action is called the double holding. In the middle of the movement of the drive rod, the latching of the drive rod can cause friction between a gripper and the drive rod. This state may give damage to both the gripper and the drive rod. In this paper, we have devised the method which can have two grippers hold the drive rod more stably, without damaging the equipment.

  • PDF

Stable Control-rod Double Hold Method of Control Rod Drive Mechanism (원자로 제어봉구동장치의 안정적 제어봉 이중 유지 방법)

  • Cheon, Jong-Min;Kim, Choon-Kyung;Lee, Jong-Moo;Jung, Soon-Hyun;Kim, Seog-Ju;Kwon, Soon-Man
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.555-558
    • /
    • 2003
  • When a fault relating to the urgent alarm occurs, we must prevent control rods from dropping and make one of two grippers in Control Rod Drive Mechanism (CRDM) grip the drive rod laking a control rod assembly. If a gripper with any problem is ordered to grip the drive rod, the gripper which cannot latch the rod stably will fail to take the rod. On the purpose of escaping this bad case, we order two grippers to hold the drive rod and enhance the reliability of holding control rods. This action is called the double hold. In the middle of the movement of the drive rod, the latching of the drive rod can cause friction between a gripper and the drive rod. This state may give damage to both the gripper and the drive rod. In this paper, we have devised the method which can have two grippers hold the drive rod more stably, without damaging the equipment.

  • PDF