• Title/Summary/Keyword: Control rate

Search Result 16,601, Processing Time 0.042 seconds

Active Random Noise Control using Adaptive Learning Rate Neural Networks

  • Sasaki, Minoru;Kuribayashi, Takumi;Ito, Satoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.941-946
    • /
    • 2005
  • In this paper an active random noise control using adaptive learning rate neural networks is presented. The adaptive learning rate strategy increases the learning rate by a small constant if the current partial derivative of the objective function with respect to the weight and the exponential average of the previous derivatives have the same sign, otherwise the learning rate is decreased by a proportion of its value. The use of an adaptive learning rate attempts to keep the learning step size as large as possible without leading to oscillation. It is expected that a cost function minimize rapidly and training time is decreased. Numerical simulations and experiments of active random noise control with the transfer function of the error path will be performed, to validate the convergence properties of the adaptive learning rate Neural Networks. Control results show that adaptive learning rate Neural Networks control structure can outperform linear controllers and conventional neural network controller for the active random noise control.

  • PDF

Improved H.263+ Rate Control via Variable Frame Rate Adjustment and Hybrid I-frame Coding

  • 송환준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5A
    • /
    • pp.726-742
    • /
    • 2000
  • A novel rte control algorithm consisting of two major components, i.e. a variable encoding frame rate method and a hybrid DCT/wavelet I-frame coding scheme, is proposed in this work for low bit rate video coding. Most existing rate control algorithms for low bit rate video focus on bit allocation at the macroblock level under a constant frame rate assumption. The proposed rate control algorithm is able to adjust the encoding frame rate at the expense of tolerable time-delay. Furthermore, an R-D optimized hybrid DCT/wavelet scheme is used for effective I-frame coding. The new rate-control algorithm attempts to achieve a good balance between spatial quality and temporal quality to enhance the overall human perceptual quality at low bit rates. It is demonstrated that the rate control algorithm achieves higher coding efficiency at low bit rates with a low additional computational cost. The variable frame rate method and hybrid I-frame coding scheme are compatible with the bi stream structure of H.263+.

  • PDF

A Control of Channel Rate for Real-time VBR Video Transmission (실시간 비디오 전송을 위한 채널레이트 조절)

  • 고석주;이채영
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.24 no.3
    • /
    • pp.63-72
    • /
    • 1999
  • Recent studies on the Constant Bit Rate and Variable Bit Rate transmissions have mainly focused on the frame by frame encoder rate control based on the quantization parameter. With the existing approaches it is difficult to guarantee a consistent video quality. Also, the rate control overhead is too high for the real-time video sources. In this paper, a channel rate allocation scheme based on the control period is proposed to transmit a real-time video, in which the control period is defined by a pre-specified number of frames or group of pictures. At each control period, video traffic information is collected to determine the channel rate at the next control period. The channel rate is allocated to satisfy various channel rate constraints such that the buffer occupancy at the decoder is maintained at a target level. If the allocated channel rate approaches the level at which the negotiated traffic descriptions may be violated, the encoder rate is decreased through adjusting quantization parameters in the MPEG encoder. In the experimental results, the video quality and the overflow and underflow probabilities at the buffer are compared at different control periods. Experiments show that the video quality and the utilization of network bandwidth resources can be optimized through the suitable selection of the control period.

  • PDF

MPC-based Active Steering Control using Multi-rate Kalman Filter for Autonomous Vehicle Systems with Vision (비젼 기반 자율주행을 위한 다중비율 예측기 설계와 모델예측 기반 능동조향 제어)

  • Kim, Bo-Ah;Lee, Young-Ok;Lee, Seung-Hi;Chung, Chung-Choo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.735-743
    • /
    • 2012
  • In this paper, we present model predictive control (MPC) applied to lane keeping system (LKS) based on a vision module. Due to a slow sampling rate of the vision system, the conventional LKS using single rate control may result in uncomfortable steering control rate in a high vehicle speed. By applying MPC using multi-rate Kalman filter to active steering control, the proposed MPC-based active steering control system prevents undesirable saturated steering control command. The effectiveness of the MPC is validated by simulations for the LKS equipped with a camera module having a slow sampling rate on the curved lane with the minimum radius of 250[m] at a vehicle speed of 30[m/s].

Multi-view Rate Control based on HEVC for 3D Video Services

  • Lim, Woong;Lee, Sooyoun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.245-249
    • /
    • 2013
  • In this paper, we propose two rate control algorithms for multi-view extension of HEVC with two rate control algorithms adopted in HEVC and analyze the multi-view rate control performance. The proposed multi-view rate controls are designed on HEVC-based multi-view video coding (MV-HEVC) platform with consideration of high-level syntax, inter-view prediction, etc. not only for the base view but also for the extended views using the rate control algorithms based on URQ (Unified Rate-Quantization) and R-lambda model adopted in HEVC. The proposed multi-view rate controls also contain view-wise target bit allocation for providing the compatibility to the base view. By allocating the target bitrates for each view, the proposed multi-view rate control based on URQ model achieved about 1.83% of average bitrate accuracy and 1.73dB of average PSNR degradation. In addition, about 2.97% of average bitrate accuracy and 0.31dB of average PSNR degradation are achieved with the proposed multi-view rate control based on R-lambda model.

Optimal Rhythm Control Strategy in Patients With Atrial Fibrillation

  • Daehoon Kim;Pil-Sung Yang;Boyoung Joung
    • Korean Circulation Journal
    • /
    • v.52 no.7
    • /
    • pp.496-512
    • /
    • 2022
  • For almost 20 years, data regarding the effect of rhythm control therapy for atrial fibrillation (AF) on cardiovascular prognosis in comparison with rate control therapy has not been conclusive. The safety of rhythm control and anticoagulation therapy has generally improved. Recently, it was revealed that a rhythm-control strategy reduced the risk of adverse cardiovascular events than usual rate control in patients with recent AF (diagnosed within 1 year). Within 1 year after the AF diagnosis, early initiation of rhythm control led to more favorable cardiovascular outcomes than rate control. Early rhythm control reduced the risks of stroke and heart failure-related admission than rate control. Moreover, rhythm control was associated with lower dementia risk than rate control. Finally, early rhythm control treatment was also effective in patients with asymptomatic AF but less effective in older adults. Therefore, in patients with AF, rhythm control should be considered at earlier stages, regardless of symptom.

Rate Modulation Strategy for Behaviors of a Mobile Robot

  • Kim, Hong-Ryeol;Kim, Joo-Min;Kim, Dae-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1109-1114
    • /
    • 2003
  • In this paper, task control architecture is proposed for a mobile robot with behaviors based on cognition theory to endow the robot intelligence. In the task control architecture, task manager is introduced especially for the management of computational resource. The management is based on classical RMS (Rate Monotonic Strategy), but with online rate modulation strategy. The rate modulation is performed using the value variances of behavior execution for the task. Because the values are based on natively uncertain sensor information, they are modeled using PDF (probability Density Function). As a rate modulation process, the range of the rate modulation is defined firstly by real-time constraints of RMS and discrete control stability of behaviors. With the allowable range, rate modulations are performed considering harmonic bases to maintain utilization bound without decrease. To evaluate the efficiency of the proposed rate modulation strategy, a simulation test is performed to compare the efficiency between the control architecture with the proposed strategy and previous one. A performance index with the formalization of propensity of resource allocation is proposed and utilized for the simulation test. To evaluate the appropriateness of the performance index, the performance index is compared with practical one through a practical simulation test.

  • PDF

Optimum Uplink Power/Rate Control for Minimum Delay in CDMA Networks

  • Choi, Kwon-Hue;Kim, Soo-Young
    • ETRI Journal
    • /
    • v.25 no.6
    • /
    • pp.437-444
    • /
    • 2003
  • We derive a new joint power and rate control rule with which we can minimize the mean transmission delay in CDMA networks for a given mean transmission power. We show that it is optimal to respectively control the power inverse-linearly and the rate linearly to the square root of channel gain while maintaining the signal-to-interference ratio at a constant. We also show that the proposed joint power/rate control rule achieves excellent performance results in terms of the probability of the instantaneous delay being within a target delay against one-dimensional control schemes.

  • PDF

A study on improvement of policing perfomance by usage parameter control in asynchronous transfer mode networks (ATM망에서 사용자 변수 제어에 의한 감시 성능 개선에 관한 연구)

  • 한길성;오창석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.6
    • /
    • pp.1480-1489
    • /
    • 1996
  • In ATM networks there are two methods in traffic control as schemes advancing the quality of service. One is reactive control after congestion and the other which is generally recommended, is preventive control before congestion, including connection admission control on call leel and usage parameter control, network parameter control, priority control and congestion control on cell level. In particular, usage parameter control is required for restricting the peak cell rate of bursy tracffic to the parameter negotiated at call set-up phase since the peak cell rate significantly influences the network quality of service. The scheme for progressing quality of service by usage parameter control is themethod using VSA(Virtual Scheduling Algorlithm) recommended ITU-T. The method using VSSA(Virtual Scheduling Suggested Algorlithm) in this paper is suggested by considering cell delay variation and token rate of leaky bucket, compared VSA and VSANT(Virtual Scheduling Algolithm with No Tolerance) with VSSA which polices violated cell probability of conformed peak cell rate and intentionally excessive peak cell rate. VSSA method using IPP(Interruped Poisson Process) model of input traffic source showed more quality of service than VSA and VSANT methods as usage parameter control because the suggested method reduced the violated cell probability of contformed peak cell rate and intentionally excessive peak cell rate.

  • PDF

Dual-rate Digital Controller Design for Continuous-time Linear Systems

  • Park, Poo-Gyeon;Ko, Jeong-Wan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.468-472
    • /
    • 2003
  • The lifting technique is a standard control procedure that is commonly applied to dual-rate systems, where a critical difficulty is that care must be taken so that the resulting equivalent system preserves the causality constraint between the control signal and the measured output. To overcome this difficulty, the most attractive result has been suggested by defining control time sequences as the union of sample and hold time sequences. However, the sacrifice of regular control period scheme results in some serious disadvantages; restrictions on the implementation to hardware and the corresponding inefficient control scheme. On the contrary, this paper proposes a novel dual-rate control technique, which redescribes the system as a control-rate-based system having regular control period and designs the controller, with no causality constraint, through Linear Matrix Inequality (LMI) formulation.

  • PDF