• Title/Summary/Keyword: Control packet

Search Result 1,137, Processing Time 0.035 seconds

A Survey on Fly-By-Wireless Flight Control Technology (Fly-By-Wireless 비행제어 기술의 연구 동향)

  • Han, Jung-Soo;Ha, Chul-Su;O, Su-Hun;Kang, Seung-Eun;Ko, Sangho
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.1
    • /
    • pp.7-14
    • /
    • 2014
  • This paper deals with recent research cases and directions of Fly-By-Wireless (FBWLS) flight control technology. FBWLS is a new type of flight control system technology with the aim of solving the problems mainly caused by the increasing amount of wires in aircraft to which Fly-By-Wire (FBW) technology applies. Therefore, in FBWLS flight control system the wired communication system is replaced with a wireless communication system. Currently the FBWLS flight control technology is at an initial development stage and thus this paper surveys deals with the cases in the viewpoint of technology feasibility. In this context, this paper analyzes technology that needs further studies to secure the reliability, stability and accuracy to the similar level of the corresponding FBW system. Since the major problems of FBWLS technology are packet losses and time delays so that this paper suggests the research direction of wireless communication protocol selection, optimization of wireless communication network and controller design considered communication environment.

A Wireless Sink Congestion Control by Tournament Scheduling (토너먼트 스케줄링을 이용한 무선싱크 혼잡제어)

  • Lee, Chong-Deuk
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.4
    • /
    • pp.641-648
    • /
    • 2012
  • The up-streams of the continuous streaming of data packets with lower importance level in the wireless sink node can cause congestion and delay, they affect on energy efficiency, memory size, buffer size, and throughput. This paper proposes a new wireless sink congestion control mechanism based on tournament scheduling. The proposed method consists of two module parts: stream decision module part and service differentiation module part. The final winner in the tournament controls congestion effectively, minimizes packet loss due to congestion, decreases energy consumption, and improves QoS. The simulation result shows that the proposed method is more effective and has better performance compared with those of congestion descriptor-based control method, reliability-based control method, and best-effort transmission control method.

An Accelerometer-Assisted Power Management for Wearable Sensor Systems

  • Lee, Woosik;Lee, Byoung-Dai;Kim, Namgi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.318-330
    • /
    • 2015
  • In wearable sensor systems (WSSs), sensor nodes are deployed around human body parts such as the arms, the legs, the stomach, and the back. These sensors have limited lifetimes because they are battery-operated. Thus, transmission power control (TPC) is needed to save the energy of sensor nodes. The TPC should control the transmission power level (TPL) of sensor nodes based on current channel conditions. However, previous TPC algorithms did not precisely estimate the channel conditions. Therefore, we propose a new TPC algorithm that uses an accelerometer to directly measure the current channel condition. Based on the directly measured channel condition, the proposed algorithm adaptively adjusts the transmission interval of control packets for updating TPL. The proposed algorithm is efficient because the power consumption of the accelerometer is much lower than that of control packet transmissions. To evaluate the effectiveness of our approach, we implemented the proposed algorithm in real sensor devices and compared its performance against diverse TPC algorithms. Through the experimental results, we proved that the proposed TPC algorithm outperformed other TPC algorithms in all channel environments.

Design and Implementation of ECTP for Reliable Group Communications (신뢰적 그룹통신을 위한 ECTP 설계 및 구현)

  • 박주영;정옥조;강신각
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.916-919
    • /
    • 2003
  • Reliable multicast data transmission in a 1:N environment needs more sophisticated error control mechanism than that of in 1:1 environment due to ACK implosion and duplicated retransmission. Although there have been many related research on error control in reliable multicast, real implemented protocols are rare. As one of the reliable multicast transport protocols, ECTP is selected as an international standard reliable multicast protocol by ITU-T and ISO and implemented on RedHat 7.2 machine by us. In this paper, we evaluate the performance of the error control mechanism in the respect of throughput and generated control packet numbers with a real implementation code. From the results, it is concluded that the suitable values of error control parameters can be obtained from the local group size and network environments.

  • PDF

Adaptive Rate Control Scheme based on Cross-layer for Improving the Quality of Streaming Services in the Wireless Networks (무선 네트워크에서 스트리밍 서비스의 품질향상을 위한 Cross-layer 기반 적응적 전송률 조절 기법)

  • Kim, Sujeong;Chung, Kwangsue
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1609-1617
    • /
    • 2013
  • TFRC(TCP-Friendly Rate Control) has a performance degradation in wireless networks because it performs congestion control by judging all the losses occurred in wireless networks as a congestion indicator. It is also degraded by the increased Round Trip Time(RTT) due to packet retransmission and contention overhead in the link layer. In this paper, we propose an adaptive rate control scheme based on cross-layer to improve the quality of streaming services in the wireless networks. It provides new RTT estimation and loss discrimination methods to improve transmission rate of TFRC. The simulation results show that the proposed scheme can improve the performance of TFRC.

An Adaptive Traffic Interference Control System for Wireless Home IoT services (무선 홈 IoT 서비스를 위한 적응형 트래픽 간섭제어 시스템)

  • Lee, Chong-Deuk
    • Journal of Digital Convergence
    • /
    • v.15 no.4
    • /
    • pp.259-266
    • /
    • 2017
  • The massive traffic interferences in the wireless home IoT provides the reason for packet losses, and it degrades the QoS (Quality of Service) and throughput on the home network. This paper propose a new adaptive traffic interference control system, ATICS, for enhancing QoS and throughput for IoT services as detecting a traffic process and non-traffic process in the wireless home network. The proposed system control the traffic interferences as distinguishing the short-term traffic process and long-term traffic process by traffic characteristics in wireless home networks. The simulation results shows that the proposed scheme have more efficient traffic control performance than the other schemes.

Wireless Measurement based TFRC for QoS Provisioning over IEEE 802.11 (IEEE 802.11에서 멀티미디어 QoS 보장을 위한 무선 측정 기반 TFRC 기법)

  • Pyun Jae young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4B
    • /
    • pp.202-209
    • /
    • 2005
  • In this paper, a dynamic TCP-friendly rate control (TFRC) is proposed to adjust the coding rates according to the channel characteristics of the wireless-to-wired network consisting of wireless first-hop channel. To avoid the throughput degradation of multimedia flows traveling through wireless lint the proposed rate control system employs a new wireless loss differentiation algorithm (LDA) using packet loss statistics. This method can produce the TCP-friendly rates while sharing the backbone bandwidth with TCP flows over the wireless-to-wired network. Experimental results show that the proposed rate control system can eliminate the effect of wireless losses in flow control of TFRC and substantially reduce the abrupt quality degradation of the video streaming caused by the unreliable wireless link status.

A flexible error control model in transport layer for multimedia application (멀티미디어 응용을 위한 수송 계층에서의 유연한 오류 제어 모델)

  • 박동성;이상헌;고봉홍;이재용;이상배
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.4
    • /
    • pp.911-925
    • /
    • 1996
  • Emerging service classes need an error model which efficiently satisfies the requirements for each media and application. However limited flexibility in the error control has been provided. Therefore we propose a new error control model which applies error control scheme per media flexibly with respect to ETL(Error Tolerance Leverl) and delay. In order to select the error control scheme in this model, the attributes of media(i.e., ETL, isochronism), the attributes of application(i.e., delay) and environment parameters(i.e., packet loss ration, network types, connection modes of the application) are considered as effect factors.

  • PDF

Design and Implementation of Data Processing Middleware and Management System for IoT based Services

  • Lee, Yon-Sik;Mun, Young-Chae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.2
    • /
    • pp.95-101
    • /
    • 2019
  • Sensor application systems for remote monitoring and control are required, such as the establishment of databases and IoT service servers, to process data being transmitted and received through radio communication modules, controllers and gateways. This paper designs and implements database server, IoT service server, data processing middleware and IoT management system for IoT based services based on the controllers, communication modules and gateway middleware platform developed. For this, we firstly define the specification of the data packet and control code for the information classification of the sensor application system, and also design and implement the database as a separate server for data protection and efficient management. In addition, we design and implement the IoT management system so that functions such as status information verification, control and modification of operating environment information of remote sensor application systems are carried out. The implemented system can lead to efficient operation and reduced management costs of sensor application systems through site status analysis, setting operational information, and remote control and management.

Medium Access Control Design for UWB Communication Systems: Review and Trends

  • Nardis, Luca De;Di Benedetto, Maria-Gabriella
    • Journal of Communications and Networks
    • /
    • v.5 no.4
    • /
    • pp.386-393
    • /
    • 2003
  • Future wireless networks are expected to achieve high bit rates at low cost, enabling multimedia and QoS-based services over the wireless medium. The impulse radio ultra-wide band (IR-UWB) technique is a promising candidate in the deployment of such networks, thanks to its potential robustness and capacity. In the past, most of the UWB research focused on hardware and physical layer aspects in order to solve the technological challenges posed by IR-UWB. UWB peculiar characteristics may, however, also stimulate innovative higher layers’ design. This work addresses MAC issues for UWB communication systems. Key areas such as medium sharing, MAC organization, packet scheduling and power control are reviewed. The impact of UWB on the above functions is discussed, and areas which require UWB specific design are identified. Finally, novel MAC functions enabled by UWB specific features, i.e., precise ranging and positioning, are presented.