• Title/Summary/Keyword: Control of air traffic

Search Result 223, Processing Time 0.026 seconds

Comparative Study on the Methodology of Motor Vehicle Emission Calculation by Using Real-Time Traffic Volume in the Kangnam-Gu (자동차 대기오염물질 산정 방법론 설정에 관한 비교 연구 (강남구의 실시간 교통량 자료를 이용하여))

  • 박성규;김신도;이영인
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.4
    • /
    • pp.35-47
    • /
    • 2001
  • Traffic represents one of the largest sources of primary air pollutants in urban area. As a consequence. numerous abatement strategies are being pursued to decrease the ambient concentration of pollutants. A characteristic of most of the these strategies is a requirement for accurate data on both the quantity and spatial distribution of emissions to air in the form of an atmospheric emission inventory database. In the case of traffic pollution, such an inventory must be compiled using activity statistics and emission factors for vehicle types. The majority of inventories are compiled using passive data from either surveys or transportation models and by their very nature tend to be out-of-date by the time they are compiled. The study of current trends are towards integrating urban traffic control systems and assessments of the environmental effects of motor vehicles. In this study, a methodology of motor vehicle emission calculation by using real-time traffic data was studied. A methodology for estimating emissions of CO at a test area in Seoul. Traffic data, which are required on a street-by-street basis, is obtained from induction loops of traffic control system. It was calculated speed-related mass of CO emission from traffic tail pipe of data from traffic system, and parameters are considered, volume, composition, average velocity, link length. And, the result was compared with that of a method of emission calculation by VKT(Vehicle Kilometer Travelled) of vehicles of category.

  • PDF

A Study on Take-off and Landing Experimental System for Development of Power Platforms for Electric Vertical Take-Off and Landing Air Mobility (전기 수직이착륙 항공모빌리티용 동력플랫폼 개발을 위한 이착륙 실험시스템 연구)

  • Jun-Seong, Weon;Kwang-Hyun Ro
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.639-648
    • /
    • 2023
  • In modern society, UAM (Urban Air Mobility) transportation system is being developed as an alternative to urban traffic congestion and environmental problems, and electric vertical take-off and landing (eVTOL) is a combination of vertical take-off and landing function and electric power. It is attracting attention as an innovative next-generation transportation method as an eco-friendly alternative that reduces noise and air pollution by providing efficient mobility within the city. Since eVTOL development requires designing and implementing airframes suitable for various mission purposes, the power system needs to be developed as a platform concept before airframe development. In this study, we empirically proposed a test bench concept equipped with a stable power supply and an efficient control system, essential in developing a power platform with a combined function in the form of a fuselage and module type specialized for various mission purposes. The proposed drivetrain platform test bench consists of a system verifying the stable take-off and landing software and a power platform adjusting the motor's thrust. It will serve as a verification system that can be developed.

Development and Field Assessment of DO Control System in an Aeration Tank for Automation of Sewage Treatment Plant

  • Jung, In-Chul;Kim, Dae-Yong;Junq, Byung-Gil
    • Journal of Environmental Science International
    • /
    • v.18 no.6
    • /
    • pp.603-608
    • /
    • 2009
  • Activated sludge sewage treatment processes are difficult to be controlled because of their complex and nonlinear behaviour, however, the control of the dissolved oxygen level in the reactors plays an important role in the operation of the facility. For this reason, this study is designed to present a system which accurately measures DO, MLSS, pH and ORP in the aeration tank to alleviate situations above and provide the automatization of a sewage treatment plant (STP) using new DO control system. The automatic control systems must be guaranteed the accuracy. Therefore, the proposed automatic DO control system in this study could be commercial applications in the aeration tanks by means of operating cost analysis and user-friendly for operation and maintenance. We could get accurate data from the lab tank which has water quality checker because there was no vortex and air bubble during the measurement process. Improvement of confidence in the lab tank enabled effective and automatic operation of sewage treatment plants so that operation costs and manpower could be saved. If this result is put in place in every sewage treatment plant nationwide for practical purposes, it is estimated to cost 18.5 million dollars in installing the lab tank and to save 9.8 million dollars in management cost a year, except for cost saved by automation.

A Study on Aptitude for Helicopter Pilots through the Job Analysis (직무분석을 통한 회전익 항공기 조종사 적성에 관한 연구)

  • Yu, T.J.;Kim, C.Y.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.1
    • /
    • pp.63-69
    • /
    • 2006
  • The operational environment of helicopters extends from the civil air traffic control system to remote and hazardous areas and from day operations under visual flight conditions to night operations in adverse weather. Helicopters can move in any direction, remain stationary while airborne, climb and descend vertically, and take off and land almost anywhere. Thus their range of maneuvers and control requirements vary more widely than do those of fixed-wing aircraft. In this study, I analyzed the job of helicopter pilot through methods of observation, and classified the required ability of them into the domain of cognitive, perceptual/spatial, psychomotor. I expect that the result of this study will be used to aid training and selection of helicopter pilot.

  • PDF

COVID-19 and Aviation Medical Examination (코로나바이러스감염증-19 (COVID-19)과 항공신체검사)

  • Kwon, Young Hwan
    • Korean journal of aerospace and environmental medicine
    • /
    • v.30 no.3
    • /
    • pp.86-90
    • /
    • 2020
  • Coronavirus disease 2019 (COVID-19) has had a significant impact on our society as a whole. The COVID-19 pandemic is not only a health crisis, it is also an economic, social and humanitarian crisis. Considering the dramatic global economic and social impact that the crisis has engendered, the aviation system is standing on the doorstep of rapid transformation. In particular, the impact on the aviation and travel industries is enormous. Air travel to most countries has been suspended and blocked. Looking at Korea's current situation, COVID-19 has wholly changed the aviation industry. As COVID-19 spreads around the world, countries have come up with aviation safety measures. Infectious disease safety measures were established to protect passengers and crew members, and countries with collapsed medical systems extended the validity period for aviation medical examinations. In Korea, on August 11, the Ministry of Land, Infrastructure and Transport provided guidance on medical measures related to COVID-19 through an official letter of "Notification of cautions for pilots and air traffic control officers (ATCO) when COVID-19 is confirmed". Overseas countries such as the United States and the United Kingdom have announced regulations for aviation medical examination regulations in relation to COVID-19, and have set standards for returning to aviation after COVID-19 is confirmed. In this paper, we would like to investigate the regulations for aviation medical examination related to COVID-19.

A Verification & Validation Methodology Study on the Development of A-SMGCS (A-SMGCS 개발에 따른 적정성 평가와 검증방법에 관한 연구)

  • Hong, Seung-Beom;Choi, Seung-Hoon;Cho, Young-Jin;Choi, Youn-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.2
    • /
    • pp.81-86
    • /
    • 2014
  • In this paper, we states the verification and validation methodology for the modular system of A-SMGCS which defined in the ICAO Manual on Advanced Surface Movement Guidance and Control Systems. Such systems aim to maintain the declared surface movement rate under all weather conditions while maintaining the required level of safety. With the complete concept of an A-SMGCS, air traffic controllers, vehicle drivers, flight crews, and are assisted with surface operations in terms of surveillance, control, routing/planning and guidance tasks. A-SMGCS verification and validation for the development of Real Time Simulation, shadow mode trials, operational trials are conducted through three methods. In this study, the characteristics and the need for such a verification method was examined.

Design of Vehicle Location Tracking System using Mobile Interface

  • Chung, Ji-Moon;Choi, Sung;Ryu, Keun-Ho
    • 한국디지털정책학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.185-202
    • /
    • 2004
  • Recent development in wireless computing and GPS technology cause the active development in the application system of location information in real-time environment such as transportation vehicle management, air traffic control and location based system. Especially, study about vehicle location tracking system, which monitors the vehicle's position in a control center, is appeared to be a representative application system. However, the current vehicle location tracking system can not provide vehicle position information that is not stored in a database at a specific time to users. We designed a vehicle location tracking system that could track vehicle location using mobile interface such as PDA. The proposed system consist of a vehicle location retrieving server and a mobile interface. It is provide not only the moving vehicle's current location but also the position at a past and future time which is not stored in database for users.

  • PDF

Common Cause Failure Problems in Ultra-High Reliability Systems-A View Point on Common Cause Internal Effects and Statistical Principles (초신뢰성 시스팀에서의 공통원인 실패문제-공통원인의 내부적 효과 및 통계학적 원리의 관점에서)

  • Park, P.;Ko, K.H.;Kim, C.S.;Kim, H.K.;Oh, H.S.
    • Electronics and Telecommunications Trends
    • /
    • v.8 no.3
    • /
    • pp.39-52
    • /
    • 1993
  • This study involves a Common Cause Failure (CCF) problem on the ultra-high reliability required system development such as war game operations, nuclear power control, air traffic control, space shuttle missions, and large scale network communication system. The system situation problems are defined according to CCF, reliability and system fault identifications for the development cast verifications in the multi-version redundant software system. Then, CCF analysis of redundant system, system principles and statistical dependence are also described. This validation oh the CCF in the human software interaction system will notify software engineers to conceive what really is CCF contribution factor, not only the internal but the external ones.

Spline parameterization based nonlinear trajectory optimization along 4D waypoints

  • Ahmed, Kawser;Bousson, Kouamana;Coelho, Milca de Freitas
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.5
    • /
    • pp.391-407
    • /
    • 2019
  • Flight trajectory optimization has become an important factor not only to reduce the operational costs (e.g.,, fuel and time related costs) of the airliners but also to reduce the environmental impact (e.g.,, emissions, contrails and noise etc.) caused by the airliners. So far, these factors have been dealt with in the context of 2D and 3D trajectory optimization, which are no longer efficient. Presently, the 4D trajectory optimization is required in order to cope with the current air traffic management (ATM). This study deals with a cubic spline approximation method for solving 4D trajectory optimization problem (TOP). The state vector, its time derivative and control vector are parameterized using cubic spline interpolation (CSI). Consequently, the objective function and constraints are expressed as functions of the value of state and control at the temporal nodes, this representation transforms the TOP into nonlinear programming problem (NLP). The proposed method is successfully applied to the generation of a minimum length optimal trajectories along 4D waypoints, where the method generated smooth 4D optimal trajectories with very accurate results.

DEVELOPMENT OF A CONTROL SYSTEM FOR AN AUTOMATIC ROAD SIGN REMOVING EQUIPMENT USING HIGH PRESSURE WATER-JET (초고압수를 이용한 노면표시 자동제거 장비개발을 위한 제어시스템 및 노면최적조건에 대한 연구)

  • Kwon Soon-Wook;Kim Kyoon-Tai;Han Jae-Goo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.4 s.20
    • /
    • pp.139-146
    • /
    • 2004
  • Resent removal work for road signs has been labor intensive and required times since it has been done manually using shaving type equipment. While traditional process is conducting, there are traffic jams caused by the passing control, and happened unexpected accidents to workers working at dangerous road circumstance. Besides, in current shaving method, there are high potentialities on the air pollution as well as the explosive accident occurred by using a propane gas. So, as an alternative, we have studied to develop the automatic erasing equipment made up with a high pressure water-jet system and automatic control system, mobile system; Wate-rjet system consists of an intensifier and nozzles to give a high pressure and spray on the sign, and automatic control system is composed of one axis robot using a hydraulic servo actuator controlled by a lever, And as a mobile system, a truck plays an important role for the transport of equipment and the forward movement in a removal process. In this paper, we have analyzed the characteristics of road signs and have investigated current erasing methods in the field. And we have organized and designed automatic erasing equipment, and we have made a basic experiment to find out the optimal spray condition as like the spray distance, spray angle and injection pressure.