• Title/Summary/Keyword: Control of Cracking

Search Result 352, Processing Time 0.022 seconds

Bond, Flexural Properties and Control of Plastic Shrinkage Cracking of Crimped type Synthetic Fiber Reinforced Cement Based Composites (Crimped Type 합성섬유로 보강된 시멘트 복합재료의 부착, 휨 및 소성수축균열제어 특성)

  • Won, Jong Pil;Park, Chan Gi;Lim, Dong Hee;Back, Chul Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.1033-1039
    • /
    • 2006
  • The purpose of this study are to evaluated bond, flexural properties and control of plastic shrinkage cracking of crimped type synthetic fiber with amplitude 6 mm and height 1.8 mm reinforced cement based composites. Bond and flexural test were conducted in accordance with the JCI-SF 8 and JCI SF-4 standard, respectively. The plastic shrinkage cracking test was conducted for evaluating the effect of fiber in reducing shrinkage cracking in cement based composites. Test results indicated that the crimped typel synthetic fibers performed significantly better than the straight type fiber in terms of interface toughness and pullout load and the crimped type synthetic fibers improved the flexural toughness of concrete. Also, the increasing the crimped type synthetic fiber volume fraction from 0.00% to 1.00% improved the plastic shrinkage cracking resistance. Specially, the effect of control of plastic shrinkage cracking is excellent at the more than 0.5% fibre volume fraction.

Crack control of precast deck loop joint using high strength concrete

  • Shim, Changsu;Lee, Chi dong;Ji, Sung-woong
    • Advances in concrete construction
    • /
    • v.6 no.5
    • /
    • pp.527-543
    • /
    • 2018
  • Crack control of precast members is crucial for durability. However, there is no clear provision to check the crack width of precast joints. This study presents an experimental investigation of loop joint details for use in a precast bridge deck system. High strength concrete of 130 MPa was chosen for durability and closer joint spacing. Static tests were conducted to investigate the cracking and ultimate behavior of test specimens. The experimental results indicate that current design codes provide reasonable estimation of the flexural strength and cracking load of precast elements with loop joint of high strength concrete. However, the crack width control of the loop joints with high strength concrete by the current design practices was not appropriate. Some recommendations to improve crack control of the loop joint were derived.

Application of a 3-D crack analysis model to RC cantilever decks of excessive cracking

  • Shi, Zihai;Nakano, Masaaki
    • Structural Engineering and Mechanics
    • /
    • v.12 no.4
    • /
    • pp.377-396
    • /
    • 2001
  • The excessive cracking of RC cantilever decks, which often requires special attention for structural engineers, is studied using a three-dimensional crack analysis model. The model is based on a fracture energy approach for analyzing cracks in concrete, and the numerical analysis is carried out using a modified load control method. The problem of excessive cracking is then studied with four different span-ratios. Based on the numerical results, the crack behavior with respect to the patterns of crack propagation, dissipation of the fracture energy, and effects on the structural integrity are discussed. The mechanisms which cause the excessive cracking are also explained.

Study on the Crack Control Effect of Moist Curing Equipment in Side Wall of Building (습윤양생 장치를 이용한 아파트 측벽 균열제어에 관한 연구)

  • Kim, Dae-Geon;Lee, Dong-Woon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.2
    • /
    • pp.127-134
    • /
    • 2017
  • In this study, moist curing equipment was used in the exist gang-form system. By achieving sufficient spray curing, the quality of the concrete was improved and the cracking occurred in building's side wall was decreased. The following results could be made as the conclusion. For the compressive strength, all zones showed the similar results. Comparing with the zone without using moist curing equipment, the zone used moist curing equipment showed higher rebound hardness results. For the cracking, the zone utilized moist curing equipment showed the cracking averaged as 6.6 m and the zone without using moist curing equipment showed the cracking averaged as 10.3m. The effectof reducing cracking by utilizing moist curing equipment is about 36 %. Using moist curing equipment is considered as a good solution to reduce the cracking in the structure. Considering all the factors analysed, using moist curing equipment improved the quality of the concrete and decreased the cracking. When this equipment was used in the construction site, it is expected that the construction periodcan be shrunk and the ratio of defect caused by drying shrinkage can be decreased. In this research conditions, The 0.3mm sized moist curing equipment provided the most desirable results on concrete quality and preventing cracking.

Crack Prevention of Very-Early Strength Latex-Modified Concrete (초속경 라텍스개질 콘크리트의 균열 억제방안)

  • Lee, Bong-Hak;Choi, Pan-Gil
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.89-96
    • /
    • 2008
  • An increase in the amount of cracking in repaired concrete bridge decks using VES-LMC(Very Early Strength - Latex Modified Concrete ; below VES-LMC) has been noticed by Yun et al(1). Literature indicates that indeed many concrete bridge decks develop transverse cracking, most developing at early ages(3~7 days), many right after construction. The purpose of this study was to establish prevention of map, transverse and longitudinal cracking in VES-LMC and to provide a control methods for minimizing the occurrence of cracks. The proposed prevention against map and transverse cracking was verified by field applications. VES cement was modified, the unit cement contents was reduced into $360kg/m^3$ from $390kg/m^3$, the maximum size of coarse aggregate was increase into 19mm from 13mm, wire mesh and steel fibers were incorporated in concrete mixture. A series of variable combinations were attempted. As a results, the proposed prevention against map and transverse cracking was verified because no crack were occurred until 90 days after overlay.

  • PDF

COLD CRACK SUSCEPTIBILITY OF HIGH STRENGTH WELD METAL

  • Kim, H. J.;B. Y. Kang
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.266-272
    • /
    • 2002
  • This study reviews the factors controlling the weld metal cracking and shows the difference from those of HAZ cracking. It further reviews the recent progresses made in consumable design for improving the crack resistance in the high strength weld metal. Previously the controlling factors for weld metal cracking were regarded as weld metal strength, diffusible hydrogen and weld metal height. However an overall review presented in this article shows that the cold crack resistance can be improve significantly through the microstructural control and that an increase in tensile strength is not necessarily related to a decrease in the resistance to cold cracking.

  • PDF

Mesoscale model for cracking of concrete cover induced by reinforcement corrosion

  • Chen, Junyu;Zhang, Weiping;Gu, Xianglin
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.53-62
    • /
    • 2018
  • Cracking of concrete cover induced by reinforcement corrosion is a critical issue for life-cycle design and maintenance of reinforced concrete structures. However, the critical degree of corrosion, based on when the concrete surface cracks, is usually hard to predict accurately due to the heterogeneity inherent in concrete. To investigate the influence of concrete heterogeneity, a modified rigid-body-spring model, which could generate concrete sections with randomly distributed coarse aggregates, has been developed to study the corrosion-induced cracking process of the concrete cover and the corresponding critical degree of corrosion. In this model, concrete is assumed to be a three-phase composite composed of coarse aggregate, mortar and an interfacial transition zone (ITZ), and the uniform corrosion of a steel bar is simulated by applying uniform radial displacement. Once the relationship between radial displacement and degree of corrosion is derived, the critical degree of corrosion can be obtained. The mesoscale model demonstrated its validity as it predicted the critical degree of corrosion and cracking patterns in good agreement with analytical solutions and experimental results. The model demonstrates how the random distribution of coarse aggregate results in a variation of critical degrees of corrosion, which follows a normal distribution. A parametric study was conducted, which indicates that both the mean and variation of critical degree of corrosion increased with the increase of concrete cover thickness, coarse aggregates volume fraction and decrease of coarse aggregate size. In addition, as tensile strength of concrete increased, the average critical degree of corrosion increased while its variation almost remained unchanged.

Review of design parameters for FRP-RC members detailed according to ACI 440.1R-06

  • Jnaid, Fares;Aboutaha, Riyad
    • Computers and Concrete
    • /
    • v.11 no.2
    • /
    • pp.105-121
    • /
    • 2013
  • This paper investigates the parameters that control the design of Fiber Reinforced Polymer (FRP) reinforced concrete flexural members proportioned following the ACI 440.1R-06. It investigates the critical parameters that control the flexural design, such as the deflection limits, crack limits, flexural capacity, concrete compressive strength, beam span and cross section, and bar diameter, at various Mean-Ambient Temperatures (MAT). The results of this research suggest that the deflection and cracking requirements are the two most controlling limits for FRP reinforced concrete flexural members.

Analysis of Cracking Phenomenon Occurring During Hot Rolling of Fe-23Mn High-manganese Steels with Different Aluminium and Carbon Contents (알루미늄과 탄소 함량에 따른 Fe-23Mn계 고망간강의 열간 압연 시 발생하는 균열 현상 분석)

  • Lim, Hyeon-Seok;Lee, Seung-Wan;Hwang, Byoungchul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.4
    • /
    • pp.176-180
    • /
    • 2016
  • In this study, a microstructural investigation was conducted on the cracking phenonmenon occurring during hot rolling of Fe-23Mn high-manganese steels with different aluminium and carbon contents. Particular emphasis was placed on the phase stability of austenite and ferrite dependent on the chemical composition. An increase in the aluminum content promoted the formation of ferrite band structures which were easily deformed or cracked. In the steels containing high carbon contents of 0.4 wt.% or higher, on the other hand, the volume fraction and thickness of ferrite bands decreased and thus the cracking frequency was significantly reduced. Based on these findings, it is said that the microstructural evolution occurring during hot rolling of high-manganese steels with different aluminium and carbon contents plays an important role in the cracking phenomenon. To prevent the cracking, therefore, the formation of second phases such as ferrite should be minimized during the hot rolling by the appropriate control of the chemical composition and process parameters

Analysis of Crack Pattern of Very-Early Strength Latex-Modified Concrete (초속경 라텍스개질 콘크리트의 균열발생 특징분석)

  • Lee, Bong-Hak;Choi, Pan-GiI
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.103-110
    • /
    • 2007
  • Concrete is a material that will crack during its service life by its very nature. For bridge decks this is especially significant as these cracks allow accelerated ingress of chlorides and the subsequent corrosion of the reinforcing steel and deck deterioration. Very-early strength latex-modified concrete (below ; VES-LMC) was developed in order to realize early-opening-to-traffic bridge deck concrete. Although there has been little research to document the degree of cracking in VES-LMC overlay, there has been a general perception among highway agencies that overlay cracking of VES-LMC, particularly early-age cracking, is a one of problems which should be solved. The purpose of this study was to analyze the cause of map, transverse and longitudinal cracking in VES-LMC and to provide a control methods for minimizing the occurrence of cracks. The proposed prevention against map and transverse cracking was verified by field applications. VES cement was modified, the unit cement contents was reduced into $360kg/m^3$ from $390kg/m^3$, the maximum size of coarse aggregate was increase into 19mm from 13mm, wire mesh and steel fibers were incorporated in concrete mixture.

  • PDF