• Title/Summary/Keyword: Control of CSOs

Search Result 18, Processing Time 0.02 seconds

Pattern Analysis of CSOs Generation in a Small Rural City and Control Schemes (농촌 소도시의 CSOs 발생패턴분석 및 관리대책에 관한 연구)

  • Kim, Youngchul;An, Ik-Sung;Lee, Myung-Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.543-550
    • /
    • 2007
  • In this study, combined sewer overflows (CSOs) from five independent rainfall events in rural city area were collected and investigated. First flush effect in sewage pumping station located near the WWTP was retarded 30 to 60 minutes from booster pumping station. The ratios between SS, COD and TP concentrations prior to rainfall and peak concentrations during the period of rainfall were highly increased but nitrogen was relatively constant, which indicates that it is not associated with particles washed off from the surface of watershed. Mass balance results show that 30% of CSO was generated from booster pump station and 66.5% of CSO was from the whole runoff area. In the area of newly constructed sewer system, CSO problem was related with pump and sewer capacities, but in other old sewer system equipped area, it was due to the collection efficiency. Finally, Log-Log pollutant rating equations were suggested.

A Study on First Flush Storage Tank Design for Combined Sewer Overflows (CSOs) Control (합류식하수도 월류수 관리를 위한 초기우수 저류조 설계방안 연구)

  • Son, Bongho;Oa, Seongwook
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.654-660
    • /
    • 2011
  • One of the best way to control Combined Sewer Overflow (CSO) is proposed to construct first flush storage tank. But there is little known parameters for optimum design of these facilities. This study was conducted to get optimum design parameters for a first flush storage tank construction. The optimization of the tank is generally based upon some measure of SS(Suspended Solid) mass holding efficiency. Water quality deterioration of receiving water body happened right after first time occurring rainfall in dry weather seasons. So, design rainfall intensity is used at 2 mm/hr for peak of monthly average intensities of dry seasons. The capacities for each evaluated catchment are designed from 14.4 min to 16.1 min HRT of CSOs flow at design rainfall intensity. Owing to all storage tanks are connected to interception sewer having a redundancy, the suggested volume could be cut down.

Standard-Rainfall and Capacity of Intercepting Sewer to Control CSOs (CSOs 제어를 위한 기준강우 및 차집 용량 산정)

  • Lee, Jung-Ho;Joo, Jin-Gul;Kim, Joong-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.129-135
    • /
    • 2008
  • The combined sewer overflows(COSs) which enters to river are involved with water pollution of rivers. Therefore, the standard capacity should be decided in proper standard considering water pollution density and characteristic of outflow. But in domestic, the standard capacity is not considered the characteristics of rainfall-outflows and is applied uniformly in all areas. The standard is triple of a maximum amount of sewage per one hour ; 3Q. The outflow of 3Q enters to sewage treatment plant and the overflows enter to river. In this study, a standard rainfall is estimated to determine the capacity of intercepting sewer by statistical analysis of rainfall data and it is considered about the regional characteristic of the rainfall-outflow. The standard rainfall is analyzed through the data of Seoul. In the result the standard rainfall was 6.76mm of 4hr duration. The rainfall-outflows and CSOs are analyzed using SWMM(Storm Water Management Model).

Effect of separation walls on reduction of suspended solids loading in a combined sewer system (합류식 하수관거내 우오수분리벽 설치에 따른 부유물질 제어효과)

  • Kwon, Chungjin;Lim, Bongsu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.787-796
    • /
    • 2012
  • The purpose of this study is to investigate CSOs(combined sewer overflows) control in the combined sewer with/without separation wall. There is the high correlation between sewage velocity and suspended solid(SS) loading in the sewer without it. The SS/BOD ratio was about 3 times in the area with it, while it was about 5 times in the area without it. Therefore, the accumulated deposit within the sewer has influenced high SS loading in the sewer without it. This study showed that the separation wall installed acquired an acceptable efficiency in controlling the accumulated deposit in the combined sewer. According to this study, the BOD control effect was about 38 % in the sewer with the separation wall, whereas it showed about 24 % in the sewer without it. In this case, it was anticipated that the high pollutant control effect would be expected if the separation wall was installed in the combined sewer.

Characteristics and Combined Sewer Overflows (합류식 하수관거의 유출 특성 분석 조사)

  • An, Ki-Sun;Jang, Sung-Ryong;Kwon, Young-Ho
    • Journal of Environmental Science International
    • /
    • v.19 no.6
    • /
    • pp.747-753
    • /
    • 2010
  • It follows in quality and sewage exclusion method of the investigation objective sector and the Combined Sewer Overflows which is suitable in regional characteristics and the confluence area against the rainfall initially a flow and the medulla and measurement - it analyzes the initial rainfall outflow possibility control plan which is suitable in the domestic actual condition and it proposes the monitor ring plan for the long-term flow and pollution load data accumulation. From the research which it sees the Infiltration water/Influent water and CSOs investigation it passes by the phase of hazard chain and Namwon right time 4 it does not hold reverse under selecting, Measurement it used the hazard automatic flow joint seal Sigma 910 machine and in case 15 minute interval of the I/I, it measured a flow at case 5, 15 minute standing of the CSOs. The water quality investigation for the water leakage investigation of the I/I and the sewage from the point which is identical with flow measurement during on-the-spot inspection duration against 6 items which include the BOD sampling and an analysis, when the rainfall analysis for CSOs fundamental investigation analyzed against 18 items which include the BOD sampling. Consequently, for the optimum interpretation invasion water / inflow water of the this investigation area day average the lowest flow - water quality assessment veterinarian optimum interpretation hazard average per day - lowest flow - it averages a medulla evaluation law department one lowest flow evaluation technique and it selects, it presentation collectively from here it gets, position result with base flow analysis of invasion water / inflow water.

Framework for a real-time control system of sewer systems (하수도 시스템의 실시간 제어시스템 구축 방안)

  • Ryu, Jaena;Baek, Hyunwook;Kim, Tae-Hyoung;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.649-659
    • /
    • 2013
  • Real time control (RTC) can be broadly defined as a system that dynamically adjusts the operation of facilities in response to online measurements in the field to maintain and meet the operational objectives, both during dry and wet weather conditions. RTC adds a dynamic component that is actively adjusted in real time based on system conditions. In terms of reducing or eliminating sewer flooding, CSOs and/or managing flows, implementation of RTC has various benefits to sewer system operation. It has been emerging as an attractive approach, but related elements (such as framework for the application, its components and equipments, aspects to be considered) towards its application on sewer systems have not been throughly introduced so far. The main goal of this study is to review several applications of RTC and firm guidelines published abroad, and finally to provide a framework for the proper application of RTC on sewer systems.

Scaled Down Experiment of Retention Basin with a Rotatable Bucket Using 3D Printer (3D 프린터를 이용한 회전 버킷이 부착된 저류조의 모형 실험)

  • Park, Seong-Jik;Lee, Chang-Gu;Lee, Jemyung;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.49-55
    • /
    • 2017
  • Recently climate change and urbananization have been increased surface runoff, resulting in flooding. Retention basins have been constructed to control urban flooding by reducing peak flow rate. Recently, the retention basin plays a role in controlling combined sewer overflows (CSOs) as well as urban flooding. In this study, the retention basin with a rotatable bucket was suggested and scale down experiments was performed for the optimum design of the retention basin. Scaled down model was produced using a 3D printer after it was designed as law of similarity. Two times for operating a rotary bucket is required to sweep out the sediments deposited on the bottom of the basin. Optimized dimensions for the retention basin were width of 5 m, height of 5 m, bucket radius of 0.5 m, and bottom slope of 5.0 %. It can be concluded that the results obtained from this study can be used to design the retention basin with a rotatable bucket which does not require energy to operate.