• Title/Summary/Keyword: Control law approach

Search Result 228, Processing Time 0.023 seconds

Physical Approach of the FIR Heater Design for Food Waste Fermentation (음식물 쓰레기 발효기 제작을 위한 원적외선 가열장치 설계의 물리학적 접근)

  • 한두희
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.2
    • /
    • pp.131-135
    • /
    • 2002
  • The reclamation of food waste is brought by law in order to clean the underground water. Thus the food waste feed back system should be prepared. The electric heater and mixing tool for FIR radiation were developed in order to control the food waste fermentation. Also we suggest the optimum temperature 19$0^{\circ}C$, black enamel ware for food waste control.

  • PDF

LQG modeling and GA control of structures subjected to earthquakes

  • Chen, ZY;Jiang, Rong;Wang, Ruei-Yuan;Chen, Timothy
    • Earthquakes and Structures
    • /
    • v.22 no.4
    • /
    • pp.421-430
    • /
    • 2022
  • This paper addresses the stochastic control problem of robots within the framework of parameter uncertainty and uncertain noise covariance. First of all, an open circle deterministic trajectory optimization issue is explained without knowing the unequivocal type of the dynamical framework. Then, a Linear Quadratic Gaussian (LQG) controller is intended for the ostensible trajectory-dependent linearized framework, to such an extent that robust hereditary NN robotic controller made out of the Kalman filter and the fuzzy controller is blended to ensure the asymptotic stability of the non-continuous controlled frameworks. Applicability and performance of the proposed algorithm shown through simulation results in the complex systems which are demonstrate the feasible to improve the performance by the proposed approach.

An improved approach to evaluate the compaction compensation grouting efficiency in sandy soils

  • Xu, Xiang-Hua;Xiang, Zhou-Chen;Zou, Jin-Feng;Wang, Feng
    • Geomechanics and Engineering
    • /
    • v.20 no.4
    • /
    • pp.313-322
    • /
    • 2020
  • This study focuses on a prediction approach of compaction compensation grouting efficiency in sandy soil. Based on Darcy's law, assuming that the grouting volume is equal to the volume of the compressed soil, a two-dimensional calculation model of the compaction compensation grouting efficiency was improved to three-dimensional, which established a dynamic relationship between the radius of the grout body and the grouting time. The effectiveness of this approach was verified by finite element analysis. The calculation results show that the grouting efficiency decreases with time and tends to be stable. Meanwhile, it also indicates that the decrease of grouting efficiency mainly occurs in the process of grouting and will continue to decline in a short time after the completion of grouting. The prediction three-dimensional model proposed in this paper effectively complements the dynamic relationship between grouting compaction radius and grouting time, which can more accurately evaluate the grouting efficiency. It is practically significant to ensure construction safety, control grouting process, and reduce the settlement induced by tunnel excavation.

Perception and action: Approach to convergence on embodied cognition (지각과 행위: 체화된 인지와의 융복합적 접근)

  • Lee, Young-Lim
    • Journal of Digital Convergence
    • /
    • v.14 no.8
    • /
    • pp.555-564
    • /
    • 2016
  • Space perception is generally treated as a problem relevant to the ability to recognize objects. Alternatively, the data from shape perception studies contributes to discussions about the geometry of visual space. This geometry is generally acknowledged not to be Euclidian, but instead, elliptical, hyperbolic or affine, which is to say, something that admits the distortions found in so many shape perception studies. The purpose of this review article is to understand perceived shape and the geometry of visual space in the context of visually guided action. Thus, two prominent approaches that explain the relation between perception and action were compared. It is important to understand the fundamental information of how human perceive visual space and perform visually guided action for the convergence on embodied cognition, and further on artificial intelligence researches.

A study on the Flux Feedback Approach for the Rejection of Dynamic Disturbance Forces in a Magnetically Suspended System (자기력 부상 시스템에서 외란 제거를 위한 자속 궤환 방식에 관한 연구)

  • Lee, Jun-Ho;Shin, Kyeong-Ho;Lee, Kang-Mi;Kim, Bak-Hyun;Kim, Jong-Ki;Kim, Yong-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1212-1217
    • /
    • 2006
  • This study is concerned with static and sinusoidal disturbance rejection for a single periodic input disturbance with known period. In the area of active elimination of a disturbance force, the control input should have two different kinds of gains: one is to deliver a stable control and the other is a force component to cancel the external disturbance force. In this paper we employ a simple state feedback control law to make the balance beam stable and employ a linear observer to estimate the states which represent the external disturbance force components. Simulation results verify our proposed control method to reject a static and sinusoidal disturbance force.

  • PDF

The extent of the role of internal control of Northern Borders University in maintaining the non-waste of public money

  • Oweis, Khaled Adnan
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.187-199
    • /
    • 2021
  • The research aims to measure the control procedures' effectiveness, followed by the University of Northern Borders employees. A questionnaire was developed and distributed to the target sample of financial and auditing affairs employees at the university, where the researcher followed the existing descriptive-analytical approach. The researcher relied on the field survey, and statistical analysis (spss) was used. The researcher has found that the control procedures used are highly efficient in reducing public money waste. The researcher has presented recommendations that may contribute to developing the work of oversight in combating waste of public money. These recommendations include: Increase the interaction between the General Oversight Office and the internal oversight departments at the University of Northern Borders, the incentives provided to the oversight and accounting staff for their efforts to combat public money waste. It encourages them to maintain public money and work to obliging employees to undertake training courses periodically to develop their skills and rehabilitate them in line with modern control procedures. Also, more studies and scientific research on the waste of public money and types of administrative and financial Corruption and the law in all state sectors and reach conclusions and recommendations will help decision-makers amend laws and regulations to serve the public benefit of the university and the state.

A novel smart criterion of grey-prediction control for practical applications

  • Z.Y. Chen;Ruei-yuan Wang;Yahui Meng;Timothy Chen
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.69-78
    • /
    • 2023
  • The purpose of this paper is to develop a scalable grey predictive controller with unavoidable random delays. Grey prediction is proposed to solve problems caused by incorrect parameter selection and to eliminate the effects of dynamic coupling between degrees of freedom (DOFs) in nonlinear systems. To address the stability problem, this study develops an improved gray-predictive adaptive fuzzy controller, which can not only solve the implementation problem by determining the stability of the system, but also apply the Linear Matrix Inequality (LMI) law to calculate Fuzzy change parameters. Fuzzy logic controllers manipulate robotic systems to improve their control performance. The stability is proved using Lyapunov stability theorem. In this article, the authors compare different controllers and the proposed predictive controller can significantly reduce the vibration of offshore platforms while keeping the required control force within an ideal small range. This paper presents a robust fuzzy control design that uses a model-based approach to overcome the effects of modeling errors. To guarantee the asymptotic stability of large nonlinear systems with multiple lags, the stability criterion is derived from the direct Lyapunov method. Based on this criterion and a distributed control system, a set of model-based fuzzy controllers is synthesized to stabilize large-scale nonlinear systems with multiple delays.

Trajectory Guidance and Control for a Small UAV

  • Sato, Yoichi;Yamasaki, Takeshi;Takano, Hiroyuki;Baba, Yoriaki
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.137-144
    • /
    • 2006
  • The objective of this paper is to present trajectory guidance and control system with a dynamic inversion for a small unmanned aerial vehicle (UAV). The UAV model is expressed by fixed-mass rigid-body six-degree-of-freedom equations of motion, which include the detailed aerodynamic coefficients, the engine model and the actuator models that have lags and limits. A trajectory is generated from the given waypoints using cubic spline functions of a flight distance. The commanded values of an angle of attack, a sideslip angle, a bank angle and a thrust, are calculated from guidance forces to trace the flight trajectory. To adapt various waypoint locations, a proportional navigation is combined with the guidance system. By the decision logic, appropriate guidance law is selected. The flight control system to achieve the commands is designed using a dynamic inversion approach. For a dynamic inversion controller we use the two-timescale assumption that separates the fast dynamics, involving the angular rates of the aircraft, from the slow dynamics, which include angle of attack, sideslip angle, and bank angle. Some numerical simulations are conducted to see the performance of the proposed guidance and control system.

Introduction of hook size as a tool for management measures of harvest control rules to improve grouper stock in Indonesia

  • Irfan Yulianto;Heidi Retnoningtyas;Dwi Putra Yuwandana;Intan Destianis Hartati;Siska Agustina;Mohamad Natsir;Mochammad Riyanto;Toni Ruchimat;Soraya Gigentika;Rian Prasetia;Budy Wiryawan
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.10
    • /
    • pp.617-627
    • /
    • 2023
  • Harvest control rules have been recently developed for some fisheries in Indonesia, including grouper fisheries, and are expected to reverse the trend of declining stocks. One of the proposed options of the harvest control rules is to implement the catch size limit. The catch size limit approach, however, is challenging, unless it is supported also with strong fisheries surveillance, law enforcement, and innovation. The catch size limit approach can be done by implementing changes in fishing methods and gear, including the application of different hook sizes in the hook and line fishing gear. This study examines the impact of different hook sizes on the length at first capture (Lc) and on the bell-shaped maximum selectivity using various selectivity models of the two targeted grouper species (Plectropomus leopardus and Plectropomus maculatus) in the Saleh bay, West Nusa Tenggara, Indonesia. We found that increasing hook size influences the grouper's catch size, increasing the Lc and the bell-shaped maximum selectivity of both species. Based on our findings, hook size can be used as one of the practical tools for grouper management measures, as part of harvest control rules to improve grouper stock in Indonesia.

An Application of Radio-Controlled Model Testing Techniques to Validation of Air-Vehicle Design Configuration (비행체 설계 형상 타당성 확인을 위한 무선조종 모형시험 기법 적용)

  • Chung, In-Jae;Kim, Myung-Seong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.66-72
    • /
    • 2007
  • an approach to air-vehicle design, an application of the radio-controlled model flight test techniques has been presented. The approach presented in this study is to validate the air-vehicle design configuration by analyzing the flight test results of scale model with dynamic similarities, and then to apply the analyzed results to the aerodynamic design process in early stage of the air-vehicle development. To develop practically applicable similarity laws for the subscale flying model design, the air-vehicle motions are decoupled into rotational motions for stability & control similarities and translational motions for flight performance similarities. Also, detail techniques for radio-controlled model flight test have been developed. Based on the results obtained from the radio-controlled flight test, the present approach for air-vehicle design has shown to be useful to validate the air-vehicle design configuration.