• 제목/요약/키워드: Control law approach

검색결과 228건 처리시간 0.037초

The Design of Sliding Mode Controller with Perturbation Estimator Using Observer-Based Fuzzy Adaptive Network

  • Park, Min-Kyu;Lee, Min-Cheol;Go, Seok-Jo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.506-506
    • /
    • 2000
  • To improve control performance of a non-linear system, many other researches have used the sliding mode control algorithm. The sliding mode controller is known to be robust against nonlinear and unmodeled dynamic terms. However. this algorithm raises the inherent chattering caused by excessive switching inputs around the sliding surface. Therefore, in order to solve the chattering problem and improve control performance, this study has developed the sliding mode controller with a perturbation estimator using the observer-based fuzzy adaptive network generates the control input for compensating unmodeled dynamics terms and disturbance. And, the weighting parameters of the fuzzy adaptive network are updated on-line by adaptive law in order to force the estimation errors to converge to zero. Therefore, the combination of sliding mode control and fuzzy adaptive network gives rise to the robust and intelligent routine. For evaluating control performance of the proposed approach. tracking control simulation is carried out for the hydraulic motion simulator which is a 6-degree of freedom parallel manipulator.

  • PDF

Barge 형 수상선의 DP(Dynamic Positioning) System 개발에 관한 연구 (A Study on the Development of Dynamic Positioning System for Barge Type Surface Vessels)

  • 부이반퍽;김영복
    • 동력기계공학회지
    • /
    • 제16권2호
    • /
    • pp.66-74
    • /
    • 2012
  • In this paper, the authors propose a new approach to control a barge type surface vessel. It is based on the Dynamic Positioning System(DPS) design. The main role of barge ship is to carry and supply the materials to the floating units and other places. To carry out this job, it should be positioned in the specified area. However sometimes the thrust systems are installed on it, and in general the rope control by mooring winch system is used. It may be difficult to compare the control performances of two types. If we consider this problem in point of usefulness, we can easily find out that the winch control system is more useful and applicable to the real field than the thrust control system except a special use. Therefore, in this paper we consider a DPS design problem which can be extended to the many application fields. The goal of this paper is twofold. First, the sliding mode controller (SMC) for positioning the our vessel is proposed. Especially, in this paper, a robust stability condition is given based on descriptor system representation. In the result, the sliding mode control law guarantees to keep the vessel in the defined area in the presence of environmental disturbances. And second, the thrust allocation problem is solved by using redistributed pseudo-inverse (RPI) algorithm to determine the thrust force and direction of each individual actuator. The proposed approach has been simulated with a supply vessel model and found work well.

전륜 인휠모터 후륜구동 차량의 선회 특성 변형을 위한 요모멘트 제어 (Yaw Moment Control for Modification of Steering Characteristic in Rear-driven Vehicle with Front In-wheel Motors)

  • 차현수;좌은혁;박관우;이경수;박재용
    • 자동차안전학회지
    • /
    • 제13권1호
    • /
    • pp.6-13
    • /
    • 2021
  • This paper presents yaw moment control for modification of steering characteristic in rear-driven vehicle with front in-wheel motors (IWMs). The proposed control algorithm is designed to modify yaw rate response of the test vehicle. General approach for modification of steering characteristic is to define the desired yaw rate and track the yaw rate. This yaw rate tracking method can cause the chattering problem because of the IWM actuator response. Large overshoot and settling time in IWM torque response can amplify the oscillation in control input and yaw rate. To resolve these problems, open-loop IWM controller for cornering agility was designed to modify the understeer gradient of the vehicle. The proposed algorithm has been investigated via the computer simulations and the vehicle tests. The performance evaluation has been conducted on dry asphalt using E-segment test vehicle. The performance of the proposed algorithm has been compared to general yaw rate tracking algorithm in the vehicle tests. It has been shown that the proposed control law improved the cornering agility without chattering problem.

Finite-Time Nonlinear Disturbance Observer Based Discretized Integral Sliding Mode Control for PMSM Drives

  • Zheng, Changming;Zhang, Jiasheng
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.1075-1085
    • /
    • 2018
  • To deal with the operation performance degradation of permanent magnet synchronous machine (PMSM) drives with uncertainties and unmodeled dynamics, this paper presents a finite-time nonlinear disturbance observer (FTNDO) based discretized integral sliding mode (DISM) composite control scheme. Based on the reaching-law approach, a DISM speed controller featuring a superior dynamic quality and global robustness against disturbances is constructed. This controller can avoid the reaching phase and overlarge control action. In addition, a sliding mode differentiator based FTNDO is devised and extended to the discrete-time domain for disturbance estimation. The attractive features of the FTNDO are that it can provide a finite-time converging estimation and alleviate the chattering effect in conventional sliding mode observers, while retaining robustness to parameter variations. By feeding the estimate forward to the pre-stage DISM controller, both disturbances and chattering can be significantly suppressed. Moreover, considering the estimation error of a FTNDO caused by discrete sampling, a stability analysis of the composite controller is discussed. Experimental results validate the superiority of the presented scheme.

최적화 기반 유도제어시스템 설계 (Guidance & Control System Design based on Optimization)

  • 문관영;전병을
    • 전자공학회논문지SC
    • /
    • 제48권5호
    • /
    • pp.52-58
    • /
    • 2011
  • 유도탄의 유도제어시스템은 오토파일롯, 유도법칙 및 호밍필터 등의 다양한 제어시스템으로 구성된다. 기존에는 이러한 유도제어시스템을 설계하기 위해 이러한 각 단계의 제어기를 개별적으로 최적화하는 방식이 널리 활용되었다. 하지만 이러한 방식의 경우 각 단계의 최적화시 시간과 비용이 많이 필요함은 물론, 전체시스템의 관점에서의 최적화라 볼 수 없다. 본 논문에서는 최적화 툴을 이용한 유도제어시스템 설계를 위해 각 제어시스템 설계 시 필요한 성능지수 및 구속조건을 정식화하고, 이를 통합적으로 최적화하는 기법을 제안한다.

무인자전거 최적자세제어 (Optimal Posture Control for Unmanned Bicycle)

  • 양지혁;이상용;김석윤;이영삼;권오규
    • 제어로봇시스템학회논문지
    • /
    • 제17권10호
    • /
    • pp.1006-1013
    • /
    • 2011
  • In this paper, we propose an optimal posture control law for an unmanned bicycle by deriving linear bicycle model from fully nonlinear differential equations. We calculate each equilibrium point of a bicycle under any given turning radius and angular speed of rear wheel. There is only one equilibrium point when a bicycle goes straight, while there are a lot of equilibrium points in case of turning. We present an optimal equilibrium point which makes the leaning input minimum when a bicycle is turning. As human riders give rolling torque by moving center of gravity of a body, many previous studies use a movable mass to move center of gravity like humans do. Instead we propose a propeller as a new leaning input which generates rolling torque. The propeller thrust input makes bicycle model simpler and removes input magnitude constraint unlike a movable mass. The proposed controller can hold optimal equilibrium points using both steering input and leaning input. The simulation results on linear control for circular motion are demonstrated to show the validity of the proposed approach.

반응도 제한법에 의한 KMRR의 시간 최적 출력 제어 (Time-Optimal Power Control for KMRR Using Reactivity Constraint Method)

  • Lee, Byung-Ill;Kim, Myung-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제23권1호
    • /
    • pp.30-40
    • /
    • 1991
  • 한국형 다목적 연구로(KMRR)의 출력 자동제어를 위하여 새로운 제어이론으로 등장한 반응도 제한법을 시간 최적제어에 적용하여 보았다. 반응도 제한법은 원자로내의 반응도가 제어봉의 움직임으로 상쇄될 수 있는 반응도보다 항상 작도록 제한하여 준다. 이 방법을 시간 최적제어에 이용하기 위해 서 는 일정 한 원자로주기를 유지하도록 하는 반응도 값을 Dynamic Period Equation으로 얻어야 한다. 따라서 2점 동특성 방정식에 의한 Dynamic Period Equation이 새로 유도되었다. 이 제어법을 시험하기 위해 수학적 모델로 구성된 제어모델을 원자로 모의 전산코드인 KMRSIM에 적용하여 보았다. 반응도제한법도 출력의 시간 최적제어에서 신뢰할만한 결과를 보여줌을 알았다.

  • PDF

퍼지규칙에 의한 직.간접 혼합 신경망 적응제어시스템의 설계 (Design of the Combined Direct and Indirect Adaptive Neural Controller Using Fuzzy Rule)

  • 이순영;장순용
    • 한국정보통신학회논문지
    • /
    • 제4권3호
    • /
    • pp.603-610
    • /
    • 2000
  • 본 논문에서는 직접 적응제어기와 간접 적응제어기를 Lyapunov 안정도 이론에 근거하여 결합하였다. 제어기는 RBF 신경망을 이용하여 구성하였으며 하중파라미터들은 적응칙에 의하여 조정되도록 하였다. 또한 시스템의 성능에 영향을 미치는 결합 가중치는 퍼지 If-THEN 규칙을 이용하여 결정되도록 하였다. 이렇게 함으로써 직접 적응제어기와 간접 적응제어기의 장점을 지니는 직 간접 혼합 신경망 적응제어기를 구성할 수 있었다. 제안한 알고리즘의 효용성을 보이기 위하여 일축 강페 로봇 매니퓰레이터를 대상으로 시뮬레이션한 결과 만족할 만한 성능을 보였다.

  • PDF

완화된 Non-Quadratic 안정화 조건을 기반으로 한 이산 시간 Takagi-Sugeno 퍼지 시스템의 최적 제어 (Optimal Control for Discrete-Time Takagi-Sugeno Fuzzy Systems Based on Relaxed Non-Quadratic Stabilization Conditions)

  • 이동환;박진배;양한진;주영훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1724_1725
    • /
    • 2009
  • In this paper, new approaches to optimal controller design for a class of discrete-time Takagi-Sugeno (T-S) fuzzy systems are proposed based on a relaxed approach, in which non-quadratic Lyapunov function and non-parallel distributed compensation (PDC) control law are used. New relaxed conditions and linear matrix inequality (LMI) based design methods are proposed that allow outperforming previous results found in the literature. Finally, an example is given to demonstrate the efficiency of the proposed approaches.

  • PDF

서보계설계에 대한 쌍선형 변환법의 응용 및 카트의 위치제어 (Application of bilinear Transformation Method to Servo Sysstem Design and Position Control for a Cart System)

  • 김상봉;오세준;정용길;김환성
    • 대한전기학회논문지
    • /
    • 제40권3호
    • /
    • pp.290-298
    • /
    • 1991
  • In the paper, the bilinear transformation method is applied to the design of servo system adopting the use of the internal model principle and the pole assignment method in a specified region. The pole assignment problem for the augmented system has been solved by using Tustin's function. The properties of Tustin's function have been shown in relation to the s-plane and z-planes, and the feedback law relationship between the original system and the transformed system has been cleared. The effectiveness of the proposed approach is proved via application for the cart system and the designed cart system is implemented by digital control with microcomputer and A-D/D-A converter.