• 제목/요약/키워드: Control device optimization

검색결과 125건 처리시간 0.022초

저전압용 외전형 BLDC 전동기의 소비전류 최소화에 대한 연구 (A Study on the Current Minimization of a Outer-Rotor Type BLDC Motor for Low Voltage Application)

  • 김한들;정교범;신판석
    • 한국군사과학기술학회지
    • /
    • 제21권2호
    • /
    • pp.211-216
    • /
    • 2018
  • This paper presents a numerical optimization technique and switching phase control technique aiming at improvement of efficiency of the low voltage BLDC motor. The optimization technique is performed using the generalized sensitivity technique, response surface method(RSM) and sampling minimization technique. In order to minimize current consumption of the BLDC motor, the switching method of the driving device is optimized using RSM with finite element analysis. The ratings of BLDC motor are 50 W, 24 V, 1200 rpm. As optimizing results, the input current is reduced from 2.78 to 2.51 [A] when the switching phase is shifted by -2.65 [DEG_ELC] at the rated driving speed of 1200 [rpm]. It is confirmed that the proposed method reduces the consuming current of the low voltage BLDC motor through switching phase control method using the numerical optimization method.

600 V급 Planar Field Stop IGBT 최적 설계 및 전기적 특성 분석에 관한 연구 (A Study on Optimal Design and Electrical Characteristics of 600 V Planar Field Stop IGBT)

  • 남태진;정은식;강이구
    • 한국전기전자재료학회논문지
    • /
    • 제25권4호
    • /
    • pp.261-265
    • /
    • 2012
  • IGBT(insulated gate bipolar transistor) is outstanding device for current conduction capabilities. IGBT design to control the large power switching device for power supply, converter, solar converter, electric home appliances, etc. like this IGBT device can be used in many places so to increase the efficiency of the various structures are coming. in this paper optimization design of planar type IGBT and planar field stop IGBT, and both devices have a comparative analysis and reflection of the electrical characteristics.

이종 복합 메카니즘 HIF 기구의 충격저감시스템 해석 (Analysis of Isolation System in Distinct Multi-mechanism HIF Device)

  • 최의중;김효준
    • 한국정밀공학회지
    • /
    • 제22권2호
    • /
    • pp.53-59
    • /
    • 2005
  • In this study, the isolation system for multi-mechanism HIF (high impulsive force) device has been investigated. For this purpose, parameter optimization process has been performed based on the simplified isolation system model under constraints of moving displacement and transmitted force. The design parameters for multi-mechanism HIF device have been derived with respect to HIF system I and HIF system II, respectively. In order to implement the dynamic absorbing system, the dual stage hydro-pneumatic damper and magnetorheological damper with semi-active control scheme are considered. Finally, the performance of the designed prototype isolation system has been evaluated by experimental works under actual operating conditions.

Performance Analysis of Co- and Cross-tier Device-to-Device Communication Underlaying Macro-small Cell Wireless Networks

  • Li, Tong;Xiao, Zhu;Georges, Hassana Maigary;Luo, Zhinian;Wang, Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권4호
    • /
    • pp.1481-1500
    • /
    • 2016
  • Device-to-Device (D2D) communication underlaying macro-small cell networks, as one of the promising technologies in the era of 5G, is able to improve spectral efficiency and increase system capacity. In this paper, we model the cross- and co-tier D2D communications in two-tier macro-small cell networks. To avoid the complicated interference for cross-tier D2D, we propose a mode selection scheme with a dedicated resource sharing strategy. For co-tier D2D, we formulate a joint optimization problem of power control and resource reuse with the aim of maximizing the overall outage capacity. To solve this non-convex optimization problem, we devise a heuristic algorithm to obtain a suboptimal solution and reduce the computational complexity. System-level simulations demonstrate the effectiveness of the proposed method, which can provide enhanced system performance and guarantee the quality-of-service (QoS) of all devices in two-tier macro-small cell networks. In addition, our study reveals the high potential of introducing cross- and co-tier D2D in small cell networks: i) cross-tier D2D obtains better performance at low and medium small cell densities than co-tier D2D, and ii) co-tier D2D achieves a steady performance improvement with the increase of small cell density.

Resource Allocation and EE-SE Tradeoff for H-CRAN with NOMA-Based D2D Communications

  • Wang, Jingpu;Song, Xin;Dong, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권4호
    • /
    • pp.1837-1860
    • /
    • 2020
  • We propose a general framework for studying resource allocation problem and the tradeoff between spectral efficiency (SE) and energy efficiency (EE) for downlink traffic in power domain-non-orthogonal multiple access (PD-NOMA) and device to device (D2D) based heterogeneous cloud radio access networks (H-CRANs) under imperfect channel state information (CSI). The aim is jointly optimize radio remote head (RRH) selection, spectrum allocation and power control, which is formulated as a multi-objective optimization (MOO) problem that can be solved with weighted Tchebycheff method. We propose a low-complexity algorithm to solve user association, spectrum allocation and power coordination separately. We first compute the CSI for RRHs. Then we study allocating the cell users (CUs) and D2D groups to different subchannels by constructing a bipartite graph and Hungrarian algorithm. To solve the power control and EE-SE tradeoff problems, we decompose the target function into two subproblems. Then, we utilize successive convex program approach to lower the computational complexity. Moreover, we use Lagrangian method and KKT conditions to find the global optimum with low complexity, and get a fast convergence by subgradient method. Numerical simulation results demonstrate that by using PD-NOMA technique and H-CRAN with D2D communications, the system gets good EE-SE tradeoff performance.

유비쿼터스 기반 분산 자율 전압 제어 방식에 의한 배전계통 전압 보상 전략 (The Voltage Compensation Strategy of Distribution System Using the Ubiquitous-based Distributed Voltage Control Method)

  • 고윤석
    • 전기학회논문지
    • /
    • 제57권10호
    • /
    • pp.1696-1702
    • /
    • 2008
  • This paper proposes a voltage compensation device direct control strategy to realize the distributed, autonomous voltage control of the distribution system, which based on voltage data collected from customers of the remote site under the ubiquitous-based distribution system. In the proposed method, The ULTC and the SVR(Step Voltage Regulator)s compensate autonomously the voltage for self-compensation area based on the voltage data furnished from the ubiquitous device of customers. Also, the SVRs overcome the limit of single-operation of ULTC by the interlocking operation with the ULTC and enhance the voltage compensation capability for the customer. In particular, an optimization design method and a fuzzy design method are compared to determine the effective control method of the voltage compensator under the ubiquitous-based on-line operation environments. In fuzzy method, the tap of voltage compensator is defined as output member. Finally, the proposed two methods are implemented in Visual C++ MFC, the effectiveness is proved by simulation based on the worst virtual voltage data. Also, an optimal voltage compensation strategy is determined under on-line environments based on analyzed results.

A STUDY ON THE ENGINE PERFORMANCE OF A SPARK IGNITION ENGINE ACCORDING TO THE IGNITION ENERGY

  • Han, Sung Bin
    • 에너지공학
    • /
    • 제23권3호
    • /
    • pp.1-6
    • /
    • 2014
  • The more or less homogeneous fuel-air mixture that exists at the end of the compression process is ignited by an electric ignition spark from a spark plug shortly before top dead center. The actual moment of ignition is an optimization parameter; it is adapted to the engine operation so that an optimum combustion process is obtained. Brake mean effective pressure (BMEP) of the spark ignition energy control device (IECD) than conventional spark system at the stoichiometric mixture is increased about 9%. For lean burn engine, the lean limit is extended about 25% by using the IECD. It was considered the stability of combustion by the increase of flame kernel according to the high ignition energy supplies in initial period and discharge energy period lengthen by using the IECD.

펠티어 냉난방시스템 최적화 기술에 관한 연구 (A Study on Optimization Development of Peltier Air-conditioning System)

  • 박상훈;정수진;박영우;박유경;송범중
    • 융복합기술연구소 논문집
    • /
    • 제3권1호
    • /
    • pp.19-23
    • /
    • 2013
  • This study is concerned with air-conditioning system in use of thermoelectric device. It is introduced that the well designed structures for better cooling & heating performance with high efficiency. And also it is performed that the system performance test of four types trial products for the use of hybrid commercial vehicle. System performance is affected by many component parts, especially heat sink design & power control method. It is applied that dual extrusive fin tube with buffer zone for the effective radiating of circulating liquid in tube. And also it is applied that power supply method with constant-current system. It is attained that system cooling capacity is 1.2kW, COP is 0.95.

  • PDF

Deep Trench Filling 기술을 적용한 600 V급 Super Junction Power MOSFET의 최적화 특성에 관한 연구 (A Study on 600 V Super Junction Power MOSFET Optimization and Characterization Using the Deep Trench Filling)

  • 이정훈;정은식;강이구
    • 한국전기전자재료학회논문지
    • /
    • 제25권4호
    • /
    • pp.270-275
    • /
    • 2012
  • Power MOSFET(metal oxide silicon field effect transistor) operate voltage-driven devices, design to control the large power switching device for power supply, converter, motor control, etc. But on-resistance characteristics depending on the increasing breakdown voltage spikes is a problem. So 600 V planar power MOSFET compare to 1/3 low on-resistance characteristics of super junction MOSFET structure. In this paper design to 600 V planar MOSFET and super junction MOSFET, then improvement of comparative analysis breakdown voltage and resistance characteristics. As a result, super junction MOSFET improve on about 40% on-state voltage drop performance than planar MOSFET.

Levenberg-Marquardt 방법을 이용한 육면형 병렬기구의 설치 오차 보정 (Installation Error Calibration by Using Levenberg-Marquardt Method on a Cubic Parallel Manipulator)

  • 임승룡;임현규;최우천;송재복;홍대희
    • 한국정밀공학회지
    • /
    • 제20권2호
    • /
    • pp.184-191
    • /
    • 2003
  • A parallel manipulator has high stiffness and all the joint errors on the device are not accumulated at the end -effector unlike a serial manipulator. These are the reasons why the parallel manipulator has been widely used in many fields of industry. In the parallel manipulator, it is very important to predict the exact pose of the end-effector when we want to control the end-effector motion. Installation errors have to be determined in order to predict and control the actual position and pose of the end-effector. This paper presents an algorithm to find the whole 36 joint error components with joint clearance errors and measurement errors considered, when a link length measurement sensor is used and data more than 36 times are acquired for 36 different configurations. A simulation test using this algorithm is performed with a Matlab program which uses the Levenberg-Marquardt method that is known to be efficient for non-linear optimization.