• Title/Summary/Keyword: Control cooling

Search Result 1,412, Processing Time 0.025 seconds

Development of a Thermoelectric Cooling System for a High Efficiency BIPV Module

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.187-193
    • /
    • 2010
  • This paper proposes a cooling system using thermoelectric elements for improving the output of building integrated photovoltaic (BIPV) modules. The temperature characteristics that improve the output of a BIPV system have rarely been studied up to now but some researchers have proposed a method using a ventilator. The efficiency of a ventilator depends mainly on the weather such as wind, irradiation etc. Because this cooling system is so sensitive to the velocity of the wind, it is unable to operate in the nominal operating cell temperature (NOCT) or the standard test condition (STC) which allow it to generate the maximum output. This paper proposes a cooling system using thermoelectric elements to solve such problems. The temperature control of thermoelectric elements can be controlled independently in an outdoor environment because it is performed by a micro-controller. In addition, it can be operated around the NOCT or the STC through an algorithm for temperature control. Therefore, the output of the system is increased and the efficiency is raised. This paper proves the validity of the proposed method by comparing the data obtained through experiments on the cooling systems of BIPV modules using a ventilator and thermoelectric elements.

Study on the cooling control algorithm of electronic devices for an electric vehicle: Part 1 Effectiveness analysis of general control logic (전기자동차용 전자장비 냉각 제어 알고리즘에 관한 연구: Part 1 일반 냉각 제어 로직 유효성 분석)

  • Seo, Jae-Hyeong;Kim, Dae-Wan;Chung, Tae-Young;Jung, Tae-Hee;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.1850-1858
    • /
    • 2014
  • The object of this study is to develop an cooling control algorithm for electronics devices of the electric vehicle. In order to estimate the existing cooling control logic of the electronic devices for the small and medium sized electric vehicle, the experiments on the coolant temperature variation of the cooling system were conducted under 4 different seasons conditions. As a result, the existing cooling control logic were overcooled when it was compared with the reference temperature for a required cooling load. In addition, the newly developed optimum cooling control logic for improving the mileages of the tested electric vehicle with consideration of the ambient temperature, vehicle speed, and refrigerant temperature of the air conditioning on/off is necessary.

The Cooling control system with inverter (인버터를 통한 냉방제어시스템)

  • Moon, Joon-Soo;Woo, Yee-Wan;Park, Jea-Hong
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.43-48
    • /
    • 2011
  • Cooling system's operation ratio shall be controlled automatically by the internal external temperature sensors in rolling stock. The Cooling System shall be the automatic operation ratio control system which automatically controlling the rotation speed of condenser, evaporator etc. using temperature detection from outside and inside of cabin. This paper will examine the cooling system that can be provide comfortable cooling service for passenger in summer.

  • PDF

Development of a Numerical Model for Prediction of the Cooling Load of Nutrient Solution in Hydroponic Greenhouse (수경온실의 양액 냉각부하 예측모델 개발)

  • 남상운;김문기;손정익
    • Journal of Bio-Environment Control
    • /
    • v.2 no.2
    • /
    • pp.99-109
    • /
    • 1993
  • Cooling of nutrient solution is essential to improve the growth environment of crops in hydroponic culture during summer season in Korea. This study was carried out to provide fundamental data for development of the cooling system satisfying the required cooling load of nutrient solution in hydroponic greenhouse. A numerical model for prediction of the cooling load of nutrient solution in hydroponic greenhouse was developed, and the results by the model showed good agreements with those by experiments. Main factors effecting on cooling load were solar radiation and air temperature in weather data, and conductivity of planting board and area ratio of bed to floor in greenhouse parameters. Using the model developed, the design cooling load of nutrient solution in hydroponic greenhouse of 1,000$m^2$(300pyong) was predicted to be 95,000 kJ/hr in Suwon and the vicinity.

  • PDF

Studies on the Performance Evaluation of Downsized High-efficiency Cooling Module (높이 축소형 고효율 냉각모듈의 성능 평가에 관한 연구)

  • Jung, Jung-Hun;Shin, Yoon-Hyuk;Park, Sung-Wook;Jeong, Sun-An;Kim, Sung-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.61-67
    • /
    • 2011
  • The cooling module needs enough space (or distance) from hood to absorb the energy from any pedestrian collision. Downsized cooling module for pedestrian protection is important to reduce the severity of pedestrian injury. When a vehicle collision happens, the downsized cooling module is required to reduce the risk of injury to the upper legs of adults and the heads of children. In this study, the performance of cooling module to cool the engine was investigated under 25% height reduction. The heat dissipation and pressure drop characteristics have been experimentally studied with the variation of coolant flow rate, air inlet velocity and A/C operation ON/OFF for the downsized cooling module. The results indicated that the cooling performance was about 94% level compared to that of the conventional cooling module. Therefore, we checked that the cooling module had good performance, and expected that the cooling module could meet the same cooling performance as conventional cooling module through optimization of components efficiency.

Flow Control of a Centralized Cooling Plant for Energy Saving (중앙식 냉방 플랜트의 유량제어를 통한 에너지 절감에 관한 연구)

  • Lee, Jeong Nam;Kim, Young Il;Chung, Kwang Seop
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.48-54
    • /
    • 2015
  • In a centralized cooling plant, precise mechanical design and control strategy are required for peak and partial cooling load management. Otherwise, it will lead to low efficiency of cooling system and energy loss due to low partial load efficiency. The purpose of this paper is to enhance energy performance of the centralized cooling plant by controlling flow system in an industrial building using measured data and energy performance simulation program. The simulation results show that the proposed flow control can cut down annual electric power consumption by about 17% compared with the conventional cooling system.

Temperature Setpoint Algorithm for the Cooling System of a Tilting Train Main Transformer (틸팅열차 주변압기 냉각시스템의 온도설정알고리즘)

  • Han, Do-Young;Noh, Hee-Jeon;Won, Jae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.387-392
    • /
    • 2008
  • In order to improve the efficiency of the main transformer in a tilting train, the optimal operation of a cooling system is necessary. For the development of the optimal control algorithm of a cooling system, the mathematical model of a main transformer cooling system was developed. This includes the dynamic model of a main transformer, an oil pump, an oil cooler and a blower. The system algorithm of a cooling system, which consists of the temperature setpoint algorithm and the temperature control algorithm, was developed. Optimal oil temperatures of the inlet and the outlet of the main transformer were obtained by considering the total electric power consumption of the system. The oil inlet temperature was controlled by the blower and the oil outlet temperature was controlled by the oil pump. A simulation program was developed by using the mathematical model and the system algorithm. Simulation results showed that the system algorithm developed from this study may be effectively used to control the main transformer cooling system in a tilting train.

  • PDF

A Study for Automatic Temperature Control of the Heating-Cooling System with Heat Pump (히트펌프 냉·난방 시스템의 온도 자동제어에 관한 연구)

  • Koo, Chang-Dae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.14 no.4
    • /
    • pp.143-149
    • /
    • 2011
  • The experiment has been investigated the room temperature change under adjusting 4-way valve which was installed for cooling and heating switch. Beside, the temperature of heat pump was controlled automatically for autonomously adjusting temperature and maintaining a constant room temperature. As results, Inlet & outlet temperature differences of compressor are $95^{\circ}C$ in cooling condition and $57^{\circ}C$ in heating condition. Therefore, Compression efficiency of cooling effect is higher than heating effect. In addition, Heat exchange effect of Cooling system condition is higher than heating system. This results can be used for studying about automatic temperature control of cooling and heating system with heat pump and 4way valve.

An Estimation of Cooling Load for Control of Ice Storage System (빙축열 시스템의 제어를 위한 냉방부하 예측)

  • Yoo, Seong-Yeon;Han, Seung-Ho;No, Kwan-Jong;Lee, Je-Myo;Kang, Tae-Seok
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.205-210
    • /
    • 2005
  • Ice storage system stores cold energy using ice, which is used for cooling on next day. Ice storage system is the effective cooling system that uses cheep electric energy during a night, and also suppresses the peak load of electricity. In this study, the normalized temperature, relative humidity and specific humidity are analyzed using the weather data for past five years in order to estimate the cooling load for the control of ice storage system. The calculated cooling loads show fairly good agreement with the measured data of model hospital, especially at the outdoor design temperature of $25^{\circ}C$.

  • PDF

A Study on the Optimized Pump Selection of the Cooling System for the PEFP DTL Accelerator (PEFP DTL 냉각시스템의 펌프 선정 최적화에 관한 연구)

  • Park, Jun;Kim, Kyung-Ryul;Kim, Hyung-Gyun
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1277-1282
    • /
    • 2009
  • The main objective of this prototype is to control resonance frequency of DTL system through the temperature control of cooling water. It is to resonant frequency of the drift tube cavities to 350 MHz. This paper describes the design of a prototype cooling water skid required for the temperature control of the DTL cavities, focusing in the modeling and simulation of the cooling system, the sizing of water pumping skid component.

  • PDF