• Title/Summary/Keyword: Control compensator

Search Result 798, Processing Time 0.024 seconds

Design of Robust Controller for Non-minimum Phase System with Parametric Uncertainty using QFT (QFT를 이용한 파라미터 불확실성을 갖는 비최소위상 제어시스템의 강인한 제어기 설계)

  • Kim, Young-Chol;Kim, Shin-Ku;Cho, Tae-Shin;Choi, Sun-Wook;Kim, Keun-Sik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.3
    • /
    • pp.1-12
    • /
    • 2001
  • We consider the robust control problem for non-minimum phase(NMP) systems with parametric uncertainty. First, a new method that translates such an uncertain NMP system into a interval family of minimum phase(MP) transfer functions followed a time delay term in the form of Pade' approximation is presented. The controller to be proposed consists of a compensator with Smith predictor structure, so that it can compensate the time delay behaviour due to NMP plant. Therein, the main feedback controller for a family of MP plants has been designed by using quantitative feedback theory(QFT) such that satisfies the robust stability against the structured uncertainty. The stability and performance of overall system are examined through an illustrative example.

  • PDF

DCM DC-DC Converter for Mobile Devices (모바일 기기용 DCM DC-DC Converter)

  • Jung, Jiteck;Yun, Beomsu;Choi, Joongho
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.319-325
    • /
    • 2020
  • In this paper, a discontinuous-conduction mode (DCM) DC-DC buck converter is presented for mobile device applications. The buck converter consists of compensator for stable operations, pulse-width modulation (PWM) logic, and power switches. In order to achieve small hardware form-factor, the number of off-chip components should be kept to be minimum, which can be realized with simple and efficient frequency compensation and digital soft start-up circuits. Burst-mode operation is included for preventing the efficiency from degrading under very light load condition. The DCM DC-DC buck converter is fabricated with 0.18-um BCDMOS process. Programmable output with external resistors is typically set to be 1.8V for the input voltage between 2.8 and 5.0V. With a switching frequency of 1MHz, measured maximum efficiency is 92.6% for a load current of 100mA.

Novel Cylindrical Magnetic Levitation Stage for Rotation as well as Translation along Axles with High Precisions (고정밀 회전 및 축방향 이송을 위한 신개념 원통형 자기부상 스테이지)

  • Jeon, Jeong-Woo;Caraiani, Mitica;Lee, Chang-Lin;Jeong, Yeon-Ho;Kim, Jong-Moon;Oh, Hyeon-Seok;Kim, Sungshin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1828-1835
    • /
    • 2012
  • In this paper, a conceptual design and a detailed design of novel cylindrical magnetic levitation stage is introduced. This is came from planar-typed magnetic levitation stage. The proposed stage is composed of cylinder-typed permanent magnet array and semi-cylinder-typed 3 phase winding module. When a proper current is induced at winding module, a magnetic levitation force between the permanent magnet array and winding module is generated. The proposed stage can precisely move the cylinder to rotations and translations as well as levitations with the magnetic levitation force. This advantage is useful to make a nano patterning on the surface of cylindrical specimen by using electron beam lithography under vacuum. Two methods are used to calculate required magnetic levitation forces. The one is 2D FEM analysis, the other is mathematical modeling. This paper shown that results of two methods are similar. An assistant plate is introduced to reduce required currents of winding module for levitations in vacuum. The mathematical model of cylindrical magnetic levitation stage is used for dynamic simulation of magnetic levitations. A lead-lag compensator is used for control of the model. Simulation results shown that the detail designed model of the cylindrical magnetic levitation stage with the assistant plate can be controlled very well.

A Subband Structured Digital Hearing Aid Design for Compensating Sensorineural Hearing Loss (감음성 난청 보상을 위한 부밴드 구조 디지털 보청기 설계)

  • Park Jo-Dong;Choi Hun;Bae Hveon-Deok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.5
    • /
    • pp.238-247
    • /
    • 2005
  • In this Paper. we Presents subband design techniques of a compensating filter and adaptive feedback canceller for the digital hearing aid. The sensorineural hearing loss has a hearing threshold that shows a nonlinear characteristic in frequency domain. and its compensation suffers from an echo that produced by an undesired time varying feedback path. Therefore. the digital hearing aid requires the compensator that can adjust gains nonlinearly in frequency bands and eliminate the echo rapidly In the Proposed digital hearing aid. the compensating filter is designed by the adaptive system identification method in subband structure, and the adaptive feedback canceller is designed by the subband affine projection algorithm. The designed compensation filter can control the nonlinear gain in each subband respectively, therefore precise compensation is possible. And the feedback canceller using the subband adaptive filter achieves fast convergence rate. The Performances of the Proposed method are verified by computer simulations as comparing with the behaviors of the previous trials.

Digitally Controlled Single-inductor Multiple-output Synchronous DC-DC Boost Converter with Smooth Loop Handover Using 55 nm Process

  • Hayder, Abbas Syed;Park, Young-Jun;Kim, SangYun;Pu, Young-Gun;Yoo, Sang-Sun;Yang, Youngoo;Lee, Minjae;Hwang, Keum Choel;Lee, Kang-Yoon
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.821-834
    • /
    • 2017
  • This paper reports on a single-inductor multiple-output step-up converter with digital control. A systematic analog-to-digital-controller design is explained. The number of digital blocks in the feedback path of the proposed converter has been decreased. The simpler digital pulse-width modulation (DPWM) architecture is then utilized to reduce the power consumption. This architecture has several advantages because counters and a complex digital design are not required. An initially designed unit-delay cell is adopted recursively for the construction of coarse, intermediate, and fine delay blocks. A digital limiter is then designed to allow only useful code for the DPWM. The input voltage is 1.8 V, whereas output voltages are 2 V and 2.2 V. A co-simulation was also conducted utilizing PowerSim and Matlab/Simulink, whereby the 55 nm process was employed in the experimental results to evaluate the performance of the architecture.

A Robust Harmonic Compensation Technique using Digital Lock-in Amplifier under the Non-Sinusoidal Grid Voltage Conditions for the Single Phase Grid Connected Inverters (디지털 록인 앰프를 이용한 비정현 계통 전압 하에서 강인한 단상계통 연계 인 버터용 고조파 보상법)

  • Khan, Reyyan Ahmad;Ashraf, Muhammad Noman;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.95-97
    • /
    • 2018
  • The power quality of Single Phase Grid-Connected Inverters (GCIs) has received much attention with the increasing number of Distributed Generation (DG) systems. However, the performance of single phase GCIs get degraded due to several factors such as the grid voltage harmonics, the dead time effect, and the turn ON/OFF of the switches, which causes the harmonics at the output of GCIs. Therefore, it is not easy to satisfy the harmonic standards such as IEEE 519 and P1547 without the help of harmonic compensator. To meet the harmonic standards a certain kind of harmonic controller needs to be added to the current control loop to effectively mitigate the low order harmonics. In this paper, the harmonic compensation is performed using a novel robust harmonic compensation method based on Digital Lock-in Amplifier (DLA). In the proposed technique, DLAs are used to extract the amplitude and phase information of the harmonics from the output current and compensate it by using a simple PI controller in the feedforward manner. In order to show the superior performance of the proposed harmonic compensation technique, it is compared with those of conventional harmonic compensation methods in terms of the effectiveness of harmonic elimination, complexity, and implementation. The validity of the proposed harmonic compensation techniques for the single phase GCIs is verified through the experimental results with a 5kW single phase GCI. Index Terms -Single Phase Grid Connected Inverter (SPGCI), Harmonic Compensation Method, Total Harmonic Distortion (THD) and Harmonic Standard.

  • PDF

Dose Planning of Forward Intensity Modulated Radiation Therapy for Nasopharyngeal Cancer using Compensating Filters (보상여과판을 이용한 비인강암의 전방위 강도변조 방사선치료계획)

  • Chu Sung Sil;Lee Sang-wook;Suh Chang Ok;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.53-65
    • /
    • 2001
  • Purpose : To improve the local control of patients with nasopharyngeal cancer, we have implemented 3-D conformal radiotherapy and forward intensity modulated radiation therapy (IMRT) to used of compensating filters. Three dimension conformal radiotherapy with intensity modulation is a new modality for cancer treatments. We designed 3-D treatment planning with 3-D RTP (radiation treatment planning system) and evaluation dose distribution with tumor control probability (TCP) and normal tissue complication probability (NTCP). Material and Methods : We have developed a treatment plan consisting four intensity modulated photon fields that are delivered through the compensating tilters and block transmission for critical organs. We get a full size CT imaging including head and neck as 3 mm slices, and delineating PTV (planning target volume) and surrounding critical organs, and reconstructed 3D imaging on the computer windows. In the planning stage, the planner specifies the number of beams and their directions including non-coplanar, and the prescribed doses for the target volume and the permissible dose of normal organs and the overlap regions. We designed compensating filter according to tissue deficit and PTV volume shape also dose weighting for each field to obtain adequate dose distribution, and shielding blocks weighting for transmission. Therapeutic gains were evaluated by numerical equation of tumor control probability and normal tissue complication probability. The TCP and NTCP by DVH (dose volume histogram) were compared with the 3-D conformal radiotherapy and forward intensity modulated conformal radiotherapy by compensator and blocks weighting. Optimization for the weight distribution was peformed iteration with initial guess weight or the even weight distribution. The TCP and NTCP by DVH were compared with the 3-D conformal radiotherapy and intensitiy modulated conformal radiotherapy by compensator and blocks weighting. Results : Using a four field IMRT plan, we have customized dose distribution to conform and deliver sufficient dose to the PTV. In addition, in the overlap regions between the PTV and the normal organs (spinal cord, salivary grand, pituitary, optic nerves), the dose is kept within the tolerance of the respective organs. We evaluated to obtain sufficient TCP value and acceptable NTCP using compensating filters. Quality assurance checks show acceptable agreement between the planned and the implemented MLC(multi-leaf collimator). Conclusion : IMRT provides a powerful and efficient solution for complex planning problems where the surrounding normal tissues place severe constraints on the prescription dose. The intensity modulated fields can be efficaciously and accurately delivered using compensating filters.

  • PDF

Radiation Therapy and Chemotherapy after Breast Conserving Surgery for Invasive Breast Cancer: An Intermediate Result (침윤성 유방암에서 유방보존수술 후 방사선치료 및 항암화학 병용치료의 성적 및 위험인자 분석)

  • Lee, Seok-Ho;Choi, Jin-Ho;Lee, Young-Don;Park, Heoung-Kyu;Kim, Hyun-Young;Park, Se-Hoon;Lee, Kyu-Chan
    • Radiation Oncology Journal
    • /
    • v.25 no.1
    • /
    • pp.16-25
    • /
    • 2007
  • [ $\underline{Purpose}$ ]: Breast conserving surgery (BCS) followed by chemotherapy (CTx.) and radiation therapy (RT) is widely performed for the treatment of early breast cancer. This retrospective study was undertaken to evaluate our interim results in terms of failure patterns, survival and relative risk factors. $\underline{Materials\;and\;Methods}$: From January 1999 through December 2003, 129 patients diagnosed with invasive breast cancer and treated with BCS followed by RT were subject to retrospective review. The median age of the patients was 45 years (age distribution, $27{\sim}76$ years). The proportions of patients according to their tumor, nodes, and metastases (TNM) stage were 65 (50.4%) in stage I, 41 (31.7%) in stage IIa, 13 (10.1%) in stage IIb, 9 (7.0%) in stage III, and 1 patient (0.8%) in stage IIIc. For 32 patients (24.8%), axillary node metastasis was found after dissection. BCS consisted of quadrantectomy in 115 patients (89.1%) and lumpectomy in 14 patients (10.6%). Axillary node dissection at axillary level I and II was performed for 120 patients (93%). For 7 patients (5.4%), only sentinel node dissection was performed with BCS. For 2 patients (1.6%) axillary dissection of any type was not performed. Postoperative RT was given with 6 MV X-rays. A tumor dose of 50.4 Gy was delivered to the entire breast area using a tangential field with a wedge compensator. An aditional dose of $9{\sim}16\;Gy$ was given to the primary tumor bed areas with electron beams. In 30 patients (23.3%), RT was delivered to the supraclavicular node. Most patients had adjuvant CTx. with $4{\sim}6$ cycles of CMF (cyclophosphamide, methotrexate, 5-fluorouracil) regimens. The median follow-up period was 50 months (range: $17{\sim}93$ months). $\underline{Results}$: The actuarial 5 year survival rate (5Y-OSR) was 96.9%, and the 5 year disease free survival rate (5Y-DFSR) was 93.7%. Local recurrences were noted in 2 patients (true: 2, regional node: 1) as the first sign of recurrence at a mean time of 29.3 months after surgery. Five patients developed distant metastases as the first sign of recurrence at $6{\sim}33$ months (mean 21 months). Sites of distant metastatic sites were bone in 3 patients, liver in 1 patient and systemic lesions in 1 patient. Among the patients with distant metastatic sites, two patients died at 17 and 25 months during the follow-up period. According to stage, the 5Y-OSR was 95.5%, 100%, 84.6%, and 100% for stage I, IIa, IIb, and III respectively. The 5Y-DFSR was 96.8%, 92.7%, 76.9%, and 100% for stage I, IIa, IIb, and III respectively. Stage was the only risk factor for local recurrence based on univariate analysis. Ten stage III patients included in this analysis had a primary tumor size of less than 3 cm and had more than 4 axillary lymph node metastases. The 10 stage III patients received not only breast RT but also received posterior axillary boost RT to the supraclavicular node. During the median 53.3 months follow-up period, no any local or distant failure was found. Complications were asymptomatic radiation pneumonitis in 10 patients, symptomatic pneumonitis in 1 patient and lymphedema in 8 patients. $\underline{Conclusion}$: Although our follow up period is short, we had excellent local control and survival results and reaffirmed that BCS followed by RT and CTx. appears to be an adequate treatment method. These results also provide evidence that distant failure occurs earlier and more frequent as compared with local failure. Further studies and a longer follow-up period are needed to assess the effectiveness of BCS followed by RT for the patients with less than a 3 cm primary tumor and more than 4 axillary node metastases.