• Title/Summary/Keyword: Control compensator

Search Result 798, Processing Time 0.038 seconds

Power Compensator Control for Improving Unbalanced Power of AC Electric Railway (교류전기철도 불평형 전력 개선을 위한 전력보상장치 제어)

  • Woo, Jehun;Lee, Jeonghyeon;Jo, Jongmin;Cha, Hanju
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.34-36
    • /
    • 2019
  • 본 논문은 교류전기철도의 불평형 부하로 인해 야기되는 3상 계통 전력의 불평형 특성을 저감하기 위한 제어 알고리즘을 제안하였으며, 전력보상장치 설계 및 이를 적용한 실험을 통해 성능을 검증하였다. 전기철도 시스템과 동일하게 3상 전압을 2개의 단상 전압으로 변환하는 스코트 변압기를 적용하였으며, M상과 T상 출력 단에 부하 및 3레벨 백투백 컨버터가 연계되어 구성된다. 백투백 컨버터는 M, T상의 불평형 부하 간 발생하는 유효전력의 차이를 실시간으로 감시하고 양방향 특성을 이용해 전력을 보상하는 역할을 수행한다. 백투백 컨버터의 유효전력은 동기좌표계 PI 제어를 통해 수행되며, DC 링크 전체 전압 및 밸런싱 제어는 시스템의 응답성 향상을 위해 M, T상 컨버터가 공동으로 분담하여 제어한다. 제안된 전력보상장치의 성능 확인을 위해 M상 5kW, T상 1kW 불평형 부하가 연계된 조건에서 시뮬레이션 및 실험을 진행하였으며, 실험 결과 전력보상장치의 동작 후 3상 전류의 불평형률이 65.04%에서 6.38%로 58.66% 저감되는 것을 통해 본 논문에서 제안하는 전력보상장치의 우수한 성능을 검증하였다.

  • PDF

Optimal Coordination and Penetration of Distributed Generation with Shunt FACTS Using GA/Fuzzy Rules

  • Mahdad, Belkacem;Srairi, Kamel;Bouktir, Tarek
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.1-12
    • /
    • 2009
  • In recent years, integration of new distributed generation (DG) technology in distribution networks has become one of the major management concerns for professional engineers. This paper presents a dynamic methodology of optimal allocation and sizing of DG units for a given practical distribution network, so that the cost of active power can be minimized. The approach proposed is based on a combined Genetic/Fuzzy Rules. The genetic algorithm generates and optimizes combinations of distributed power generation for integration into the network in order to minimize power losses, and in second step simple fuzzy rules designs based upon practical expertise rules to control the reactive power of a multi dynamic shunt FACTS Compensator (SVC, STATCOM) in order to improve the system loadability. This proposed approach is implemented with the Matlab program and is applied to small case studies, IEEE 25-Bus and IEEE 30-Bus. The results obtained confirm the effectiveness in sizing and integration of an assigned number of DG units.

Online Dead Time Effect Compensation Algorithm of PWM Inverter for Motor Drive Using PR Controller

  • Park, Chang-Seok;Jung, Tae-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1137-1145
    • /
    • 2017
  • This paper proposes the dead time effect compensation algorithm using proportional resonant controller in pulse width modulation inverter of motor drive. To avoid a short circuit in the dc link, the dead time of the switch device is surely required. However, the dead time effect causes the phase current distortions, torque pulsations, and degradations of control performance. To solve these problems, the output current including ripple components on the synchronous reference frame and stationary reference frame are analyzed in detail. As a results, the distorted synchronous d-and q-axis currents contain the 6th, 12th, and the higher harmonic components due to the influence of dead time effect. In this paper, a new dead time effect compensation algorithm using proportional resonant controller is also proposed to reduce the output current harmonics due to the dead time and nonlinear characteristics of the switching devices. The proposed compensation algorithm does not require any additional hardware and the offline experimental measurements. The experimental results are presented to demonstrate the effectiveness of the proposed dead time effect compensation algorithm.

Voltage Sag-Swell Generator for Power Quality Disturbance of Dynamic UPS System (다이나믹 UPS 시스템의 전력품질 외란발생을 위한 전압 Sag-Swell 발생기)

  • Byeon W. Y.;Kim J. W.;Lee K. S.;Nho E. C.;Kim I. D.;Chun T. W.;Kim H. G.
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.102-107
    • /
    • 2005
  • This paper describes a new voltage sag-swell generator for the test of custom power devices such as UPS, DVR, DSTATCOM, SSTS, etc. Voltage sag, swell, outage, and unbalance generation mechanism and the operating principle are described for the proposed scheme. The usefulness of the scheme is proved through simulations and experiments. The proposed scheme has good features of simple structure, high reliability, wide range of sag and swell variation, and easy control. Especially, the scheme can provide a cost-effective implementation of a power quality disturbance generator. Therefore, it is expected that the scheme will contribute to the self implementation of the system with low cost in laboratory.

A Study of Inter-harmonic Control for the KSTAR Power System (KSTAR 전력계통 안정화를 위한 비정수 고조파 보상에 관한 연구)

  • Oh, Jeong-Cheol;Shin, Tae-Sung;Park, Byung-Ju;Yoo, Hang-Kyu;Hwang, An-Il;Kong, Jong-dae;Hong, Seong-lok
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.467-468
    • /
    • 2015
  • 능동형필터는 주로 비선형 부하로 부터 발생되는 정수배의 고조파를 보상하는데 응용되어 왔다. 본 논문에서는 국가핵융합연구소(NFRI)의 KSTAR 주장치의 전원공급장치인 PF MPS가 가동되면서 특이한 저차수 대역의 비정수 고조파가 발생되는데 이는 MG(motor generator)와 RPC (Reactive Power Compensator)간의 병렬공진 확대현상으로 나타나 고조파 전류의 증가, 전압왜형 상승 등 안정적인 전력계통 운영에 영향을 주고 있다. 따라서 이의 원인이 되는 특이성의 비정수 고조파를 저감시키기 위한 제어 알고리즘 개발과 모의시험에 관한 연구내용을 다루고자한다. 지금까지 개발된 알고리즘은 주로 정수배 고조파만을 대상으로 한 FFT의 일괄보상, 혹은 개별차수 보상방식이었으나 여기서는 DQ 변환 알고리즘을 채용하여 정수배 고조파는 물론 0.5차 단위의 비정수 고조파까지 제어하는 기술을 다루었다.

  • PDF

Improvement of LCC-HVDC Input-Output Characteristics using a VSC-MMC Structure

  • Kim, Soo-Yeon;Park, Seong-Mi;Park, Sung-Jun;Kim, Chun-Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_1
    • /
    • pp.377-385
    • /
    • 2021
  • High voltage direct current(HVDC) systems has been an alternative method of a power transmission to replace high voltage alternate current(HVAC), which is a traditional AC transmission method. Due to technical limitations, Line commutate converter HVDC(LCC-HVDC) was mainly used. However, result from many structural problems of LCC-HVDC, the voltage source converter HVDC(VSC-HVDC) are studied and applied recently. In this paper, after analyzing the reactive power and output voltage ripple, which are the main problems of LCC-HVDC, the characteristics of each HVDC are summarized. Based on this result, a new LCC-HVDC structure is proposed by combining LCC-HVDC with the MMC structure, which is a representative VSC-HVDC topology. The proposed structure generates lower reactive power than the conventional method, and greatly reduces the 12th harmonic, a major component of output voltage ripple. In addition, it can be easily applied to the already installed LCC-HVDC. When the proposed method is applied, the control of the reactive power compensator becomes unnecessary, and there is an advantage that the cut-off frequency of the output DC filter can be designed smaller. The validity of the proposed LCC-HVDC is verified through simulation and experiments.

Study on the Applicability of a New Multi-body Dynamics Program Through the Application to the Heave Compensation System (상하동요 감쇠장치 적용을 통한 새로운 다물체동역학 프로그램의 적용성 검토)

  • Ku, Nam-Kug;Ha, Sol;Roh, Myung-Il
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.247-254
    • /
    • 2013
  • In this paper, dynamic response analysis of a heave compensation system is performed for offshore drilling operations based on multibody dynamics. With this simulation, the efficiency of the heave compensation system can be virtually confirmed before it is applied to drilling operations. The heave compensation system installed on a semi-submersible platform consists of a passive and an active heave compensator. The passive and active heave compensator are composed of several bodies that are connected to each other with various types of joints. Therefore, to carry out the dynamic response analysis, the dynamics kernel was developed based on mutibody dynamics. To construct the equations of motion of the multibody system and to determine the unknown accelerations and constraint forces, the recursive Newton-Euler formulation was adapted. Functions of the developed dynamics kernel were verified by comparing them with other commercial dynamics kernels. The hydrostatic force with nonlinear effects, the linearized hydrodynamic force, and the pneumatic and hydraulic control forces were considered as the external forces that act on the platform of the semi-submersible rig and the heave compensation system. The dynamic simulation of the heave compensation system of the semi-submersible rig, which is available for drilling operations with a 3,600m water depth, was carried out. From the results of the simulation, the efficiency of the heave compensation system were evaluated before they were applied to the offshore drilling operations. Moreover, the calculated constraint forces could serve as reference data for the design of the mechanical system.

A Study on the Leading Phase Operation of Single Phase PWM Converter Train (단상PWM컨버터 차량의 진상운전에 관한 연구)

  • Kim, Baik
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.357-363
    • /
    • 2012
  • This paper presents a new operation method for the single phase PWM(Pulse Width Modulation) converter train. Recently, the trains adopting the PWM converter have become the majority in the electric locomotives since there are distinct advantages over the predecessors, which can be operated at near unity power factor. However, a slight modification of the control scheme makes this kind of vehicles run in the region of leading power factor. Although this feature seems to be of no significant use by itself, the leading phase operation can improve the voltage profile and the line loss of the feeding systems is decreased by compensating the reactive power loss along the line when it considered together with the feeding systems. This method is even more economical and efficient comparing with the installation of SVC that is mainly used for this purpose since the train can become a movable compensator. With the conditions and some essential formula for the leading phase operation, a new power factor control algorithm has been proposed to implement this scheme. The results of simulation through SIMULINK model show that the proposed method is suitable enough for practical use.

Load-adaptive 180-Degree Sinusoidal Permanent-Magnet Brushless Motor Control Employing Automatic Angle Compensation

  • Kim, Minki;Oh, Jimin;Suk, Jung-Hee;Heo, Sewan;Yang, Yil Suk
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.5
    • /
    • pp.310-316
    • /
    • 2013
  • This paper reports a sinusoidal $180^{\circ}$ drive for a permanent magnet (PM) brushless motor employing automatic angle compensator to suppress the driving loss during the wide-range load operation. The proposed drive of the sinusoidal $180^{\circ}$ PM Brushless motor reduced the amplitude of the 3-phase current by compensating for the lead-angle of the fundamental waves of the 3-phase PWM signal. The conventional lead-angle method was implemented using the fixed angle or memorized table, whereas the proposed method was automatically compensated by calculating the angle of the current and voltage signal. The algorithm of the proposed method was verified in a 30 W PM brushless motor system using a PSIM simulator. The efficiency of the conventional method was decreased 90 % to 60 %, whereas that of proposed method maintained approximately 85 % when the load shift was 0 to $0.02N{\cdot}m$. Using an FPGA prototype, the proposed method was evaluated experimentally in a 30 W PM brushless motor system. The proposed method maintained the minimum phase RMS current and 79 % of the motor efficiency under 0 to $0.09N{\cdot}m$ load conditions. The proposed PM brushless motor driving method is suitable for a variety of applications with a wide range of load conditions.

  • PDF

Variable Passive Compliance Device for Robotic Assembly (조립 로봇용 가변 수동 강성 장치의 설계)

  • Kim, Hwi Su;Park, Dong Il;Park, Chan Hun;Kim, Byung In;Do, Hyun Min;Choi, Tae Yong;Kim, Doo Hyung;Kyung, Jin Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.517-521
    • /
    • 2016
  • General industrial robots are difficult to use for precision assembly because they are operated based on position control. Their position accuracy is also usually higher than the assembly clearance (several tens of ${\mu}m$). In previous researches, force control was suggested as a robotic assembly solution. However, this method is difficult to apply in reality because of speed and cost problems. The RCC provides high speed, but applications are limited because the compliance is fixed, and it cannot detect an assembly condition during a task. A variable passive compliance device (VPCD) was developed herein. The VPCD can detect the assembly condition during tasks. This device can provide proper compliance for successful assembly tasks. The pneumatic system and the Stewart platform with an LVDT sensor were applied for measuring the displacement and variable compliance, respectively. The concept design and analysis were conducted to prove the effectiveness of the developed VPCD.