• Title/Summary/Keyword: Control co-simulation

Search Result 726, Processing Time 0.029 seconds

The Effect of the Turning Rate of the Pod Propeller on the Roll Control System of the Cruise Ship (크루즈선의 횡동요 제어시스템에 미치는 포드 각속도의 영향)

  • Lee, Sung-Kyun;Lee, Jae-Hoon;Rhee, Key-Pyo;Choi, Jin-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.14-25
    • /
    • 2012
  • Recently, the application and installation of the pod propeller to the cruise ship is dramatically increased. It is because pod propulsion system allows a lot of flexibility in design of the internal arrangement of a ship. To reflect this trend, many researches have conducted to use the pod propeller for the roll stabilization of a ship. In the paper, a roll stabilization controller is designed by using fins and pod propellers as the control actuators for cruise ships. Two kinds of control algorithms are adopted for the roll control system; LQR (Linear Quadratic Regulator) algorithm and frequency-weighted LQR algorithm. Through the numerical simulation, the effect of the turning rate of the pod propeller on the roll control system is analyzed. Analysis of the simulation results indicated that the turning rate of the pod propellers is one of the important parameters which give the significant effects on the roll stabilization.

A Multiagent-Based Hybrid Power Control and Management of Distributed Power Sources

  • Yoon, Gi-Gab;Hong, Won-Pyo;Lee, Ki-Hong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.70-81
    • /
    • 2011
  • In this paper, a multi-agent control system for DC-coupled photovoltaic (PV), fuel cell (FC), ultracapacitor(UC) and battery hybrid power system is studied for commercial buildings & apartment buildings microgrid. In this proposed system, the PV system provides electric energy to the electrolyzer to produce hydrogen for future use and transfer to the load side, if possible. Whenever the PV system cannot completely meet load demands, the FC system provides power to meet the remaining load. A multi-agent system based-power management and control algorithm is proposed for the hybrid power system by taking into account the characteristics of each power source. The main works of this paper are hybridization of alternate energy sources with FC systems using long and short storage strategies to build the multi-agent control system with pragmatic design, and a dynamic model proposed for a PV/FC/UC/battery bank hybrid power generation system. A dynamic simulation model for the hybrid power system has been developed using Matlab/Simulink, SimPowerSystems and Stateflow. Simulation results are also presented to demonstrate the effectiveness of the proposed multi-agent control and management system for building microgrid.

Modeling of a Magnetic Levitation Stage and its Control (자기부상 스테이지의 모델링과 제어)

  • Yong-Joo, Kim;Jeong-Woo, Jeon;Taek-Kun, Nam
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.906-915
    • /
    • 2004
  • In this paper, we address the development of magnetic levitation positioning system. This planar magnetic levitator employs four permanent magnet liner motors. Each motor generates vertical force for suspension against gravity, as well as horizontal force for driving levitation object called a platen. This stage can generate six degrees of freedom motion by the vertical and horizontal force. We derived the mechanical dynamics equation using Lagrangian method and used coenergy to express an electromagnetic force. We proposed a control algorithm for the position and posture control from its initial value to its desired value using sliding mode control. Some simulation results are provided to verify the effectiveness of the proposed control scheme.

EVALUATION OF FOUR-WHEEL-STEERING SYSTEM FROM THE VIEWPOINT OF LANE-KEEPING CONTROL

  • Raksincharoensak, P.;Mouri, H.I;Nagai, M.I
    • International Journal of Automotive Technology
    • /
    • v.5 no.2
    • /
    • pp.69-76
    • /
    • 2004
  • This paper evaluates the effectiveness of four-wheel-steering system from the viewpoint of lane-keeping control theory. In this paper, the lane-keeping control system is designed on the basis of the four-wheel-steering automobiles whose desired steering response is realized with the application of model matching control. Two types of desired steering responses are presented in this paper. One is zero-sideslip response, the other one is steering response which realizes zero-phase-delay of lateral acceleration. Using simplified linear two degree-of-freedom bicycle model, simulation study and theoretical analysis are conducted to evaluate the lane-keeping control performance of active four-wheel-steering automobiles which have different desired steering responses. Finally, the evaluation is conducted on straight and curved roadway tracking maneuvers.

3D video simulation system using GPS (GPS를 이용한 3D 영상 구현 시뮬레이션 시스템)

  • Joo, Sang-Woong;Kang, Byeong-Jun;Shim, Kyou-Chul;Kim, Kyung-Hwan;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.891-893
    • /
    • 2012
  • Currently, aircraft and automobile simulator for training provides a variety of training by making hypothetical situation on a simulator Installed on the ground Currently. And the instructor maximizes the effectiveness of the training by Monitoring training and instructing the required training. When trainees are boarding the aircraft or automobile. The Instructor in the ground is not able to monitoring aircraft, automobile. The assessment of the training is not easy after the end of the training Therefore, it is difficult to provide high quality of education to the students. In this paper, Simulation software is to develop the following. Collecting GPS and real-time information for aircraft, automobile ${\grave{a}}implementing$ 3D simulation. Implementing Current image of the aircraft or automobile in the screen by 3D Real-time monitoring of training situation at the control center utilizing for training saving 3D video files Analysis, evaluation on training After the end of the training.

  • PDF

Developing a Cooling System for Fuel Cell Stacks Combined with Heat Pump Technology Using 1-D Simulation (1-D 시뮬레이션을 이용한 히트펌프 기술과 결합된 연료전지 스택용 냉각 시스템 개발)

  • Sang-Min Chung;Dong Gyu Park;Minsu Kim;Sung-wook Na;Seung-Jun Lee;Oh-Sung Kwon;Chul-Hee Lee
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.1-7
    • /
    • 2024
  • This paper proposes a novel cooling system for hydrogen fuel cell cooling systems by integrating heat pump technology to enhance operational efficiency. The study analyzed the cooling efficiency of the fuel cell cooling system. With the increasing focus on eco-friendly vehicle technologies to address environmental concerns and global warming, the transportation sector, a major contributor to greenhouse gas emissions, needs technological enhancements for better efficiency. The proposed cooling system was modeled through 1-D simulations. The analysis results of parameters such as thermal balance, temperature, and pressure of each component confirmed the stable operation of the system. By examining variations in the cooling system's flow rate, compressor RPM, and the Coefficient of Performance (COP) based on different refrigerants, initial research was conducted to derive optimal operating conditions and parameter values.

SENSITIVITY OF THE KEUM RIVER BASIN TO CLIMATE CHANGE

  • Kim, Young-Oh;Seo, Yong-Won;Lee, Seung-Hyun;Lee, Dong-Ryul
    • Water Engineering Research
    • /
    • v.1 no.4
    • /
    • pp.267-277
    • /
    • 2000
  • This study reports an examination of the sensitivity of water resources in the Keum River basin to climate change. Assuming a doubling in $CO_2$ concentrations, a cooperative study provided four climate change scenarios for this study, which have been translated into temperature and precipitation scenarios on a basin scale. The study utilized these temperature and precipitation data for each climate change scenario as inputs to the NWS-PC model to generate the corresponding streamflow scenario over the Keum River basin. A reservoir simulation model for the Dae-Chung Dam in the Keum River basin has been developed with an object-oriented simulation environment, STELLA. For each streamflow scenario, the performance of the reservoir was assessed in terms of reliability, resiliency, and vulnerability. Although the simulation results are heavily dependent on the choice of the climate change scenarios, the following conclusions can be clearly concluded: (1) the future streamflow over the Dae-Chung Dam tends to decease during the dry period, which seriously increases competitive water use issues and (2) flood control issues predominate under the $2CO_2$-High case.

  • PDF

Study on Dynamic Characteristics of 4-Step Drainage Tower Based on Multi-body Dynamics Simulation (다물체 동역학 시뮬레이션 기반 4단 배수 타워의 동적 특성 연구)

  • Seungwoon Park;Yeong Hwan Han;Ho Young Jeon;Chul-Hee Lee
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.9-16
    • /
    • 2023
  • This paper analyzed a drainage tower used to drain water in flooded areas. Multi-body dynamics simulation was used to analyze the dynamic behavior of the drainage tower. Structural analysis, flexible-body dynamic analysis, and rigid body dynamic analysis were done to study the maximum Von-Mises stress of the drainage tower. The results showed that the maximum Von-Mises stress occurs at the turn table, and it decreases when the angle of the boom is increased. Also, the rate of the change of angle affects the maximum stress so that the maximum stress changes more when the angular velocity of the boom increases. Based on the rigid body dynamic analysis and the theoretical analysis results, the centrifugal force from the angular velocity makes the difference in the maximum stress at the turn table because of the difference in their direction. Consequently, it was concluded that the centrifugal force should be considered when designing construction machinerythat can rotate.

Performance Evaluation of Robotic Physics Engine for Mobile Manipulator Simulation (모바일 매니퓰레이터 시뮬레이션을 위한 로봇 물리 엔진의 성능 평가)

  • Kwanwoo Lee;Junheon Yoon;Suhan Park;Jaeheung Park
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.31-38
    • /
    • 2024
  • A mobile manipulator is capable of handling a wide range of workspaces by overcoming the limitations of mobility inherent in existing fixed-base manipulators. To simulate the mobile manipulator, two contact operations should be considered in the physics engines. One of these operations is the grasp stability between the gripper and the object, while the other involves the contact between the wheels of the mobile robot and the ground during driving. However, it is still difficult to choose an appropriate physics engine for simulating these contact operations of the mobile manipulator. In this paper, the performance of physics engines for simulating the mobile manipulator is evaluated. Firstly, the grasp stability of the physics engine is quantitatively evaluated based on the contact force discontinuity. Secondly, when the mobile robot is controlled by open or closed-loop control methods, differences in the path taken by the mobile robot depending on the physics engine are analyzed. To assess the performance of robot simulation, three dynamic simulators-MuJoCo, CoppeliaSim, and IsaacSim-are used along with five physics engines: MuJoCo, Newton, ODE, Bullet, and PhysX.

DVL-RPM based Velocity Filter Design for a Performance Improvement Underwater Integrated Navigation System (수중운동체 복합항법 성능 향상을 위한 DVL/RPM 기반의 속도 필터 설계)

  • Yoo, Tae Suk;Yoon, Seon Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.774-781
    • /
    • 2013
  • The purpose of this paper is to design a DVL-RPM based VKF (Velocity Kalman Filter) design for a performance improvement underwater integrated navigation system. The proposed approach relies on a VKF, augmented by a altitude from Echo-sounder based switching architecture to yield robust performance, even when DVL (Doppler Velocity Log) exceeds the measurement range and the measured value is unable to be valid. The proposed approach relies on two parts: 1) Indirect feedback navigation Kalman filter design, 2) VKF design. To evaluate proposed method, we compare the results of the VKF aided navigation system with simulation result from a PINS (Pure Inertial Navigation System) and conventional INS-DVL method. Simulations illustrate the effectiveness of the underwater navigation system assisted by the additional DVL-RPM based VKF in underwater environment.