• Title/Summary/Keyword: Control arm

Search Result 1,243, Processing Time 0.031 seconds

Assessment of tactile acuity by two-point discrimination and grating resolution in blind and deaf humans (시각 장애우와 청각 장애우에서 두점식별력과 격자해상능을 이용한 촉각인지능평가)

  • Park, Jin-Hee;Ryoo, Hyun-Kwang;Kim, Na-Ri;Choi, Myoung-Ae;Kim, Min-Sun;Park, Byung-Rim;Kang, Dae-Im
    • Science of Emotion and Sensibility
    • /
    • v.14 no.4
    • /
    • pp.537-544
    • /
    • 2011
  • Tactile acuity was assessed in groups of control, blind, deaf, and blind caused by complication to investigate the effective tactile stimuli on tactile sensory substitution studies when tactile display is applied to persons with sensory loss of vision or hearing. Two-point discrimination and grating resolution were assessed by compass and JVP dome, respectively, in the hand, arm, neck, lumbar, and knee. In two-point discrimination by compass, control group showed the highest sensitivity in fingers among assessed body areas but did not show any significant difference between male and female. Blind group and deaf group compared to control group did not show any significant difference in fingers but showed lower sensitivity in arm and knee. In grating resolution by JVP dome, control group did not show any significant difference among five fingers as well as between male and female. Blind group showed higher sensitivity in five fingers compared to control group, but deaf group did not show any significant difference from control group. Blind caused by complication group showed lower sensitivity in two-point discrimination and grating resolution compared to control group and blind group. These results suggest that the body area and method of tactile stimulation, and difference in tactile acuity depending on underlying disease of sensory loss should be considered when tactile display is applied for sensory substitution.

  • PDF

The Effects of Motor Control and Strengthening Exercise on Secondary Shoulder Impingement Syndrome at Postmastectomy (운동조절과 근력강화 운동이 유방절제술 후 견관절의 기능부전으로 유발된 견관절 충돌 증후군에 미치는 영향)

  • Bae, Young-Hyeon;Lee, Suk-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2240-2250
    • /
    • 2012
  • This study was to identify treatment effects of the shoulder control and strengthening exercise, on the subjects with secondary shoulder impingement syndrome at postmastectomy. The subjects were patients who visited our hospital due to secondary shoulder impingement syndrome(1-2 stage) at postmastectomy and they randomly allocated to two groups: a shoulder control and strengthening group (n=10) and a conservative therapy group (n=10). Both groups received conservative therapy for 5 sessions (40 minutes per week) for 4week. The shoulder control and strengthening exercises group practiced additional motor control and strengthening exercises for 60 minutes. Values of handgrip strength, pain(visual analog scale), upper extremity circumference, Disabilities of the Arm, Shoulder and Hand questionnaire, range of motion were compared with those of the conservative therapy group. There were significant differences in the amount of change of the range of motion and Disabilities of the Arm, Shoulder and Hand scale between the two groups (p<.05), however as a measure of handgrip strength, pain(visual analog scale), upper extremity circumference did not show a significant differences. These results suggest that a motor control and strengthening exercise program is feasible, secure and suitable for secondary shoulder impingement syndrome at postmastectomy.

A PDPWM Based DC Capacitor Voltage Control Method for Modular Multilevel Converters

  • Du, Sixing;Liu, Jinjun;Liu, Teng
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.660-669
    • /
    • 2015
  • This paper presents a control scheme with a focus on the combination of phase disposition pulse width modulation (PDPWM) and DC capacitor voltage control for a chopper-cell based modular multilevel converter (MMC) for the purpose of eliminating the time-consuming voltage sorting algorithm and complex voltage balancing regulators. In this paper, the convergence of the DC capacitor voltages within one arm is realized by charging the minimum voltage module and discharging the maximum voltage module during each switching cycle with the assistances of MAX/MIN capacitor voltage detection and PDPWM signals exchanging. The process of voltage balancing control introduces no extra switching commutation, which is helpful in reducing power loss and improving system efficiency. Additionally, the proposed control scheme also possess the merit of a simple executing procedure in application. Simulation and experimental results indicates that the MMC circuit together with the proposed method functions very well in balancing the DC capacitor voltage and improving system efficiency even under transient states.

A Study on Real Time Working Path Control of Vertical Type Robot System for the Forging and Casting Process Automation

  • Lim, O-Deuk;Kim, Min-Seong;Jung, Yang-Geun;Kang, Jung-Suk;Won, Jong-Bum;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.3
    • /
    • pp.245-256
    • /
    • 2017
  • In this study, we describe a new approach to real-time implementation of working path control for the forging and casting manufacturing process by vertical type articulated robot system. The proposed control scheme is simple in structure, fast in computation, and useful for real-time control of factory automation based on robot system. Moreover, this scheme does not require any accurate parameter information, nor values of the uncertain parameters and payload variations. Reliability of the proposed controller is proved by simulation and experimental results for robot manipulator consisting of arm with six degrees of freedom under the variation of payloads and tracking trajectories in Cartesian space and joint space. The vertical type articulated robot manipulator with six axes made in SMEC Co., Ltd. has been used for real-time implementation test to illustrate the enhanced working path control performance for unmanned automation of the forging and casting manufacturing process.

Circulating Current Harmonics Suppression for Modular Multilevel Converters Based on Repetitive Control

  • Li, Binbin;Xu, Dandan;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1100-1108
    • /
    • 2014
  • Modular multilevel converters (MMCs) have emerged as the most promising topology for high and medium voltage applications for the coming years. However, one particular negative characteristic of MMCs is the existence of circulating current, which contains a dc component and a series of low-frequency even-order ac harmonics. If not suppressed, these ac harmonics will distort the arm currents, increase the power loses, and cause higher current stresses on the semiconductor devices. Repetitive control (RC) is well known due to its distinctive capabilities in tracking periodic signals and eliminating periodic errors. In this paper, a novel circulating current control scheme base on RC is proposed to effectively track the dc component and to restrain the low-frequency ac harmonics. The integrating function is inherently embedded in the RC controller. Therefore, the proposed circulating current control only parallels the RC controller with a proportional controller. Thus, conflicts between the RC controller and the traditional proportional integral (PI) controller can be avoided. The design methodologies of the RC controller and a stability analysis are also introduced. The validity of the proposed circulating current control approach has been verified by simulation and experimental results based on a three-phase MMC downscaled prototype.

High-speed Integer Fuzzy Controller without Multiplications

  • Lee Sang-Gu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.223-231
    • /
    • 2006
  • In high-speed fuzzy control systems applied to intelligent systems such as robot control, one of the most important problems is the improvement of the execution speed of the fuzzy inference. In particular, it is more important to have high-speed operations in the consequent part and the defuzzification stage. To improve the speedup of fuzzy controllers for intelligent systems, this paper presents an integer line mapping algorithm to convert [0, 1] real values of the fuzzy membership functions in the consequent part to a $400{\times}30$ grid of integer values. In addition, this paper presents a method of eliminating the unnecessary operations of the zero items in the defuzzification stage. With this representation, a center of gravity method can be implemented with only integer additions and one integer division. The proposed system is analyzed in the air conditioner control system for execution speed and COG, and applied to the truck backer-upper control system. The proposed system shows a significant increase in speed as compared with conventional methods with minimal error; simulations indicate a speedup of an order of magnitude. This system can be applied to real-time high-speed intelligent systems such as robot arm control.

Ground Experiment of Spacecraft Attitude Control Using Hardware Testbed

  • Oh, Choong-Suk;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.75-87
    • /
    • 2003
  • The primary objective of this study is to demonstrate ground-based experiment for the attitude control of spacecraft. A two-axis rotational simulator with a flexible ann is constructed with on-off air thrusters as actuators. The simulator is also equipped with payload pointing capability by simultaneous thruster and DC servo motor actuation. The azimuth angle is controlled by on-off thruster command while the payload elevation angle is controlled by a servo-motor. A thruster modulation technique PWM(Pulse Width Modulation) employing a time-optimal switching function plus integral error control is proposed. An optical camera is used for the purpose of pointing as well as on-board rate sensor calibration. Attitude control performance based upon the new closed-loop control law is demonstrated by ground experiment. The modified switching function turns out to be effective with improved pointing performance under external disturbance. The rate sensor calibration technique by Kalman Filter algorithm led to reduction of attitude error caused by the bias in the rate sensor output.

A Study on Track Record and Trajectory Control of Robot Manipulator with Eight Joints Based on Monitoring Simulator for Smart Factory

  • Kim, Hee-jin;Jang, Gi-won;Kim, Dong-ho;Han, Sung-hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_1
    • /
    • pp.549-558
    • /
    • 2020
  • We describe a new approach to real-time implementation of track record and trajectory control of robotic manipulator with eight joints based on monitoring simulator. Trajectory generator uses the kinematic equations of the arm to convert the task description into a series of set points for each of the joint control loops, while the joint controllers, with simple algorithms for just one joint can move at a fast sampling rate, guaranteeing a smooth motion. The proposed control scheme is robust, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate parameter information, nor values of manipulator parameters and payload. Reliability of the proposed technology is veriefied by monitoring simulation and experimental of robot manipulator for the smart factory with eight degrees of freedom.

Posture control of buoyancy sculptures using drone technology (드론 기술을 이용한 부력 조형물의 자세 제어)

  • Kang, Jingu
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.4
    • /
    • pp.1-7
    • /
    • 2018
  • The floating sculptures in the form of ad-ballon commonly used ropes in order to hold on. Relatively air flow is much less indoor than outdoor. Users of buoyancy sculptures hope to be able to maintain their desired posture without being fixed. This study applied drone technology to buoyancy sculptures. The drones can be moved vertically and horizontally, and the posture can be maintained, so buoyancy sculptures are easy to apply. Therefore, we have studied the control system of buoyancy sculpture using drone technology. Also, a control system that can maintain the desired posture at a constant height was studied. The overall shape was a light fiber material and helium gas for zero buoyancy to support the sculpture. The system configuration was STM32F103CB from ARM. In addition, the gyro and acceleration, geomagnetic sensors and motors are composed of small and medium size BLDC motors. The scheduling of the control system in the configuration of the control device was carefully considered. Because the role of the whole component becomes very important. The communication between the components is divided into the sensor fusion and the interface communication with the whole controller. Each communication technology is designed to expand. This study was implemented to actively respond from the viewpoint of posture control using the drone technology.

The Effect of Trunk Stability Exercises on Trunk Control Ability and Daily Living Activities on the Osmotic Demyelination Syndrome of a Patient with Hyponatremia -A Case Study- (체간안정화운동이 저나트륨혈증 환자에게 발생한 삼투성 탈수초 증후군에서 체간조절능력과 일상생활동작에 미치는 영향(단일사례연구))

  • Jung, Du-Kyo
    • PNF and Movement
    • /
    • v.12 no.4
    • /
    • pp.249-258
    • /
    • 2014
  • Purpose: This study examines deficits in upper-extremity function and trunk control ability on the osmotic demyelination syndrome of a patient with Hyponatremia and Hypokalemia. Using a proprioceptive neuromuscular facilitation program, this case report aims to describe the effects of trunk stability exercises on trunk control ability, hand function, and daily living activities as well as its effects on the osmotic demyelination syndrome of a patient with Hyponatremia and Hypokalemia. Methods: The patient is a 47-year-old woman with osmotic demyelination syndrome as well as trunk and upper extremity impairment. She participated in this training intervention for four weeks. Results: The patient demonstrated improvements in trunk control ability, hand function, and performance of ADL. The following outcomes were measured before and after the training program: trunk impairment scale, hand power, Jebsen-Taylor hand function test, the Chedoke arm and hand inventory, and the modified Barthel index. Conclusion: The results suggest that trunk stability exercises in the form of a proprioceptive neuromuscular facilitation program in Hyponatremia and Hypokalemia patients may increase trunk control ability, increase hand function, and improve ADL.