• Title/Summary/Keyword: Control arm

Search Result 1,243, Processing Time 0.031 seconds

End-point positioning of one-link flexible arm under translational motion

  • Lee, Seong-Cheol;Chonan, Seiji;Inooka, Hikaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.890-895
    • /
    • 1990
  • A theoretical and experimental study of a single link flexible arm a tip mass is presented for the translational end-point positioning. The problem of shifting the end-point from its initial position to the commanded position by the amount of W $_{d}$ is considered for the open loop control such that the base follows up the given path function. The theoretical results are obtained by applying the method of the Laplace transform to the governing equation, and the solution is calculated by the method of numerical inversion. Experimental results are obtained and compared with the theoretical ones.s.

  • PDF

A Study on the Process Design for Forming of Control Arm (컨트롤 암 성형을 위한 공정설계에 대한 연구)

  • Lee, O.Y.;Kim, K.S.;Yeo, H.T.;Chun, S.Y.;Hur, K.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.365-367
    • /
    • 2009
  • The use of aluminum alloy has been interested in the automotive industry, because of its specific strength. And hollow extruded billet is more attractive than solid extruded billet but its forming application has to be precisely processed to satisfy the product quality. In this research, the process design of forming of control arm for the vehicle was studied by press bending process with hollow extruded billet. The middle protrusion portions and the middle cylindrical cup were processed separately according to the analysis. It was concluded that a useful sequence is to bend the side flange and the middle protrusion portions firstly, and then to form the middle cylindrical cup.

  • PDF

Deep Learning based Robot Arm Control System with Object Detection (딥러닝 기반 객체인식 로봇 팔 제어 시스템)

  • Baek, Yeong-Tae;Lee, Se-Hoon;Mun, Hwan-Bok;Jeong, Ui-Jung
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.01a
    • /
    • pp.135-136
    • /
    • 2018
  • 본 논문에서는 산업현장에서 특정한 물건을 인식하고 판단하여 로봇팔로 운반할 수 있는 딥러닝을 적용한 객체 인식 기반의 로봇 팔 제어 시스템을 제안하였다. 제안한 시스템은 깊이 인식 카메라를 이용하여 3D 이미지를 촬영 하고 딥러닝으로 검출된 객체를 판별 및 분류 후 인식된 객체를 로봇 팔로 피킹 하도록 구현하였다. 이를 통해, 딥러닝과 깊이인식 카메라로 다양한 환경에서 객체를 정확히 분류 및 추적할 수 있도록 해서 스마트팩토리등 다양한 분야에 활용할 수 있는 시스템을 제안하였다.

  • PDF

Microprocessor Control of a Prosthetic Arm by EMG Pattern Recognition (EMG 패턴인식을 이용한 인공팔의 마이크로프로세서 제어)

  • Hong, Suk-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.10
    • /
    • pp.381-386
    • /
    • 1984
  • This paper deals with the microcomputer realization of EMG pattern recognition system which provides identification of motion commands from the EMG signals for the on-line control of a prosthetic arm. A probabilistic model of pattern is formulated in the feature space of integral absolute value(IAV) to describe the relation between a motion command and the location of corresponding pattern. This model enables the derivation of sample density function of a command in the feature space of IAV. Classification is caried out through the multiclass sequential decision process, where the decision rule and the stopping rule of the process are designed by using the simple mathematical formulas defined as the likelihood probability and the decision measure, respectively. Some floating point algorithms such as addition, multiplication, division, square root and exponential function are developed for calculating the probability density functions and the decision measure. Only six primitive motions and one no motion are incorporated in this paper.

  • PDF

A Study on Real Time Control of Moving Stuff Action Through Iterative Learning for Mobile-Manipulator System

  • Kim, Sang-Hyun;Kim, Du-Beum;Kim, Hui-Jin;Im, O-Duck;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.4
    • /
    • pp.415-425
    • /
    • 2019
  • This study proposes a new approach to control Moving Stuff Action Through Iterative Learning robot with dual arm for smart factory. When robot moves object with dual arm, not only position of each hand but also contact force at surface of an object should be considered. However, it is not easy to determine every parameters for planning trajectory of the an object and grasping object concerning about variety compliant environment. On the other hand, human knows how to move an object gracefully by using eyes and feel of hands which means that robot could learn position and force from human demonstration so that robot can use learned task at variety case. This paper suggest a way how to learn dynamic equation which concern about both of position and path.

Study on the design and the control of an underwater construction robot for port construction (항만공사용 수중건설로봇의 기구설계 및 제어에 관한 연구)

  • Kim, Tae-Sung;Kim, Chi-Hyo;Lee, Min-Ki
    • Journal of Navigation and Port Research
    • /
    • v.39 no.3
    • /
    • pp.253-260
    • /
    • 2015
  • There are many efforts to mechanize the process for underwater port construction due to the severe and adverse working environment. This paper presents an underwater construction robot to level rubbles on the seabed for port construction. The robot is composed of a blade and a multi-functional arm to flatten the rubble mound with respect to the reference level at uneven terrain and to dig and dump the rubbles. This research analyzes the kinematics of the blade and the multi-functional arm including track and swing motions with respect to a world coordinate assigned to a reference depth sensor. This analysis is conducted interfacing with the position and orientation sensors installed at the robot. A hydraulic control system is developed to control a track, a blade and a multi-functional arm for rubble leveling work. The experimental results of rubble leveling work conducted by the robot are presented in land and subsea. The working speed of the robot is eight times faster than that of a human diver, and the working quality is acceptable. The robot is expected to have much higher efficiency in deep water where a human diver is unable to work.

Development of an Automatic Sprayer Arm Control System for Unmanned Pest Control of Pear Trees (배나무 무인 방제를 위한 약대 자동 제어시스템 개발)

  • Hwa, Ji-Ho;Lee, Bong-Ki;Lee, Min-Young;Choi, Dong-Sung;Hong, Jun-Taek;Lee, Dae-Weon
    • Journal of Bio-Environment Control
    • /
    • v.23 no.1
    • /
    • pp.26-30
    • /
    • 2014
  • Purpose of this study was a development of a sprayer arm auto control system that could be operated according to distance from pear trees for automation of pest control. Auto control system included two parts, hardware and software. First, controller was made with an MCU and relay switches. Two types of ultra-sonic sensors were installed to measure distance from pear trees: one on/off type that detect up to 3 m, and the other continuous type providing 0~5 V output corresponding to distance of 0~3 m. Second, an auto control algorithm was developed to control. Each spraying arm was controlled according to the sensor-based distance from the pear trees. And it could dodge obstacles to protect itself. Max and min signal values were eliminated, when five sensor signals was collected, and then signals were averaged to reduce sensor's noises. According to results of field experiment, auto control test result was better than non auto control test result. Spraying rates were 69.25% (left line) and 98.09% (right line) under non auto control mode, because pear trees were not planted uniformly. But, auto control test's results were 92.66% (left line) and 94.64% (right line). Spraying rate was increased by maintaining distance from tree.

Development of Control and HMI for Safe Robot Assisted Minimally Invasive Surgery (최소침습수술용 로봇의 안전성을 위한 제어 및 HMI 개발)

  • Jung, Hoi-Ju;Song, Hyun-Jong;Park, Jang-Woo;Park, Shin-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1048-1053
    • /
    • 2011
  • Recently, robots have been used in surgical area. Robotic surgery in Minimally Invasive Surgery gives many advantages to surgeons and patients both. This study introduce a robotic assistant to improve the safety of telerobotic Minimally Invasive Surgical procedures. The master-slave system is applied to the telerobotic surgical system with the master arm, which control the system, and slave robot which operates the surgery on the patient body. By using a 3-DOF master arm, the surgeon can control the 6-DOF surgical robot under the constraint of fulcrum point. This paper explains the telerobotic surgical system and confirms the system with the precision of the robot control related to the fulcrum point to enhance the safety.

Quasi-Fixed-Frequency Hysteresis Current Tracking Control Strategy for Modular Multilevel Converters

  • Mei, Jun;Ji, Yu;Du, Xiaozhou;Ma, Tian;Huang, Can;Hu, Qinran
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1147-1156
    • /
    • 2014
  • This study proposes a quasi-fixed-frequency hysteresis current tracking control strategy for modular multilevel converters (MMCs) on the basis of voltage partition principle. First, by monitoring the grid voltage and the deviation between the output and reference currents, the output voltage is determined, thus prompting the output current to quickly and efficiently track the given current. Second, the voltages of the upper/lower capacitor of the arm and the voltages between the upper and lower arms are balanced by combining these arms with virtual loop mapping and arm voltage balance control, respectively. In particular, the proposed method is designed for any level and number of sub-modules. The validity of the proposed method is verified by simulations and experimental results of a five-level MMC prototype.

Real-time Synchronization Between Two Industrial Dual-arm Robots (두 개의 산업용 양팔로봇간의 실시간 동기화 방법)

  • Choi, Taeyong;Kyung, Jinho;Do, Hyunmin;Park, Chanhun;Park, Dongil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.12
    • /
    • pp.1027-1033
    • /
    • 2016
  • There is an increasing need for manufacturing systems to produce batches in small quantities. Such manufacturing systems are significantly difficult to develop with conventional automation equipment. Recently, several research groups have applied industrial dual-arm robots to cell production lines. A synchronization method for robots is necessary for the cell production process when robots work in a shared workspace. Conventional automation factories do not need this method because the main control system operates all of the machines or robots. However, our intended application for the developed robot is in small manufacturing environments that cannot install an expensive main control system. We propose an inexpensive and high-performance method with a simple digital in/out channel using a real-time communication protocol. The developed method was validated in a pilot production line for cellular phone packing.