• Title/Summary/Keyword: Control Stick

Search Result 158, Processing Time 0.024 seconds

A Study on Performance-Analysis and Control of the Active Catheter (작동형 내시경의 성능 해석 및 제어에 관한 연구)

  • Cheong, J.P.;Kim, J.H.;Lee, J.M.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.556-561
    • /
    • 2000
  • This paper deals with the control of an active bending actuator fur a catheter. The bending actuator with 40mm in length utilizes three zigzag SMA (shape memory alloy) springs which are equally located in the circumference between inner $({\phi}2.5 mm)$ and outer $({\phi}3.0mm)$ tube. It is purposed on realization of desired bending angle $(90^{\circ})$ and direction $(360^{\circ})$. It is also installed in front of the catheter and used to guide a path at extremely bent or branched blood vessel. The performance-analysis of the bending actuator are investigated fur the purpose of optimizing the control of the bending actuator. The analog joy stick is used to command a bending angle and direction for the fast and accurate response. According to the commands of the joy stick, tensile force of each SMA spring is computed and obtained by controlling the temperature of each SMA spring using PWM (pulse width modulation) of supplied electric power.

  • PDF

Helicopter Attitude Command Response Type Control System Design using SAS Actuators and Trim Actuators (안정성증강 작동기와 트림 작동기를 이용한 헬리콥터 자세명령반응타입 제어시스템 설계)

  • Kim, Eung Tai;Choi, Inho;Hyun, JeongWook
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.4
    • /
    • pp.34-40
    • /
    • 2013
  • Attitude command response type required for enhanced handling qualities of helicopter can be implemented by mechanical automatic flight control system with SAS actuators which have limited authorities. However, the early saturation of SAS actuator hinders the helicopter from following the attitude command for large stick command. Auto-trim controller can delay SAS actuator's saturation by utilizing trim actuators and allows the attitude command response type for larger stick command. This paper describes the control law for limited authority system of helicopter with auto-trim. Limited authority system is applied to BO-105 linear dynamic model and simulation is performed along with handling quality analysis.

The Effects of Mechanically Deboned Chicken Hydrolysates on the Characteristics of Imitation Crab Stick

  • Jin, Sang-Keun;Hwang, Jin-Won;Moon, Sungsil;Choi, Yeung-Joon;Kim, Gap-Don;Jung, Eun-Young;Yang, Han-Sul
    • Food Science of Animal Resources
    • /
    • v.34 no.2
    • /
    • pp.192-199
    • /
    • 2014
  • The effects of adding mechanically deboned chicken (MDC) hydrolysates on the quality characteristics of imitation crab stick (ICS) during storage were investigated. ICS was prepared from Alaska Pollack, chicken breast surimi, and protein hydrolysates enzymatically extracted from MDC. ICS samples were divided into 4 groups: without protein hydrolysate (control), added with 0.5% protein hydrolysate (T1), added with 1.0% protein hydrolysate (T2), and added with 1.5% protein hydrolysate (T3). Results showed that crude protein content did not differ significantly among the ICS samples (p>0.05). ICS sample added with MDC hydrolysates had higher crude fat and ash content but lower moisture content than the control (p<0.05). Lightness was significantly lower in T2 and T3 than in the other groups at 0 and 4 wk of storage. Also, whiteness decreased in the groups contained MDC hydrolysates. Breaking force and jelly strength were higher in samples containing MDC hydrolysates compared to control samples (p<0.05). Additionally, saturated fatty acid contents were lower in the groups containing MDC hydrolysates than in control sample groups (p<0.05). Polyunsaturated fatty acid (PUFA) and essential fatty acids (EFA) were significantly higher in T2 and T3 than the control samples. In particular, all samples containing MDC hydrolysates had reduced thiobarbituric acid-reactive substances (TBARS) values at 4 wk. Free radical scavenging activity also was increased with addition of MDC hydrolysates.

Experiments on Robust Nonlinear Control for Brush Contact Force Estimation (연마 브러시 접촉력 산출을 위한 비선형 강건제어기 실험)

  • Lee, Byoung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.41-49
    • /
    • 2010
  • Two promising control candidates have been selected to test the sinusoidal reference tracking performance for a brush-type polishing machine having strong nonlinearities and disturbances. The controlled target system is an oscillating mechanism consisting of a common positioning stage of one degree-of-freedom with a screw and a ball nut driven by a servo motor those can be obtained commercially. Beside the strong nonlinearity such as stick-slip friction, the periodic contact of the polishing brush and the work piece adds an external disturbance. Selected control candidates are a Sliding Mode Control (SMC) and a variant of a feedback linearization control called Smooth Robust Nonlinear Control (SRNC). A SMC and SRNC are selected since they have good theoretical backgrounds, are suitable to be implemented in a digital environment and show good disturbance and modeling uncertainty rejection performance. It should be also noted that SRNC has a nobel approach in that it uses the position information to compensate the stickslip friction. For both controllers analytical and experimental studies have been conducted to show control design approaches and to compare the performance against the strong nonlinearity and the disturbances.

EXPERIMENT OF CONCRETE FLOOR FINISHING ROBOT

  • Woo, Kwang-Sik;Lee, Ho-Gil;Kim, Jin-Young;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1480-1484
    • /
    • 2004
  • In this paper, a self-propulsive and small concrete floor finishing trowel robot with twin trowels is proposed. Due to the small size and omni-directional moving capability, it is adequate for small space such as apartment. By adjusting the posture of trowels, it can move in any direction without wheels. We used cheap PIC processor for the cost saving design of the modules and adopted mode processors for easy operation of control stick. For the position control of the robot, we made a motion control algorithm appealing to the stepping motor driver module and the wireless communication module between the robot and PC (or control stick). In this paper, we discuss the control problem of the floor finishing robot in order to move to the right position. By comparing experimental result with simulation, we show the validity of the robot mechanism, sensors, and the control system.

  • PDF

Development of Loader Equipped with 4Wd and 4WS (II) (4WS System and Construction of Loader) (4WD 및 4WS이 가능한 로더 개발 (II) (4륜 조향장치 및 로더 구성))

  • 조현덕
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.1
    • /
    • pp.150-157
    • /
    • 1999
  • In this study, the loader was completed that has 4-wheel gear driven drivetrain of study (Ⅰ), the 4-wheel steering with power wheel type, all-wheel traction system, and joy-stick type lever for hydraulic control valve. From driving test of the developed 4WD and 4WS type loader, we obtained that the minimum circling radius and the necessary width in circling motion reduced about 40% and 33% compared with 2WS type loader. Also, all-wheel traction system could keep the tires glued to the ground with greater stability, the power steering allowed a smoother operation, and the joy-stick type lever offered easily to control. Thus, the developed loader having these functions was very fit in a small cattle shed or rugged ground.

  • PDF

Notch Characteristics of Spool Actuator (스풀 액추에이터의 노치 특성)

  • Yun, So-Nam;Kang, Bo-Sik
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.751-756
    • /
    • 2008
  • This paper presents the fluid characteristics of the spool actuator used for construction vehicles. A spool actuator is used for directional control of pressurized fluid and has a roll to lock the fluid flow. It is important to design the spool actuator optimally because this actuator is actuated in the sleeve by sliding motion and has some critical design parameters such as stick-slip, leakage and shock pressure. The parameters like stick-slip and leakage can be solved by precision manufacturing but the shock pressure which is taken place when the fluid direction is changed needs the parameter analysis procedure throughly. In this study, mathematical modeling and 2 & 3 phase flow dynamics analysis of the spool actuator were achieved. Using suggested model, all possible operating conditions were analyzed.

  • PDF

Adaptive Discrete Time Sliding-Mode Tracking Control of a Proportional Control Valve-Hydraulic System in the presence of friction (비선형 마찰특성을 고려한 비례제어밸브·유압실린더계의 적응 이산시간 슬라이딩모드 추적제어)

  • Yu, Hwan-Shin;Park, Hyung-Bae
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.5
    • /
    • pp.756-762
    • /
    • 2009
  • As nonlinear friction, stick-slip friction in hydraulic actuators are a problem for accuracy and repeatability. Therefore friction compensation has been approached through various control algorithms. A Adaptive discrete time sliding mode tracking controller has been applied in order to compensate the nonlinear friction characteristics in a hydraulic Actuator. Based on the diophantine equation, a new discrete time sliding function is defined and utilized for the control law which includes a friction and modeling error. Robustness is increased by using both a projection algorithm and a sliding function-based nonlinear feedforward. From the results of simulation and experiment good tracking performance is achieved.

  • PDF

SLIDING MODE MOULD LEVEL CONTROL IN CONTINUOUS CASTING PROCESS

  • Kueon, Yeong-Seob
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.50-55
    • /
    • 1998
  • Mould level control system for continuous casting process involves stick-slip friction in the sliding gate , time-delay, non-linearity, and certain uncertainties such as friction force variations between molten steel and the inner wall of mould. In this paper, sliding mode control technique was used to solve these complex control problem. The controller is then designed and implemented onto the continuous casting process. Testing result shows that sliding mode controller can decrease the fluctuating magnitude of the mould level and is superior to the existing PID controller.

Robust Digital Nonlinear Friction Compensation - Theory (견실한 비선형 마찰보상 이산제어 - 이론)

  • 강민식;김창제
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.88-96
    • /
    • 1997
  • This paper suggests a new non-linear friction compensation for digital control systems. This control adopts a hysteresis nonlinear element which can introduce the phase lead of the control system to compensate the phase delay comes from the inherent time delay of a digital control. A proper Lyapunov function is selected and the Lyapunov direct method is used to prove the asymptotic stability of the suggested control.

  • PDF