• Title/Summary/Keyword: Control Kinematics

Search Result 506, Processing Time 0.045 seconds

The study on the Intelligent Control of Robot using Fuzzy Inverse Kinematics Mapping (Fuzzy Inverse Kinematics Mapping을 이용한 로봇의 지능제어에 관한 연구)

  • 김관형;이상배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.166-171
    • /
    • 1996
  • Generally, when we control the robot, we should calculate exactly Inverse Kinematics. However, Inverse Kinematics calculation is complex and it takes much time for the manipulator to control in real-time. Therefore, the calculation of Inverse Kinematics can result in significant control delay in real time. In this paper, we will present that Inverse Kinematics can be calculated through Fuzzy Logic Mapping, Based on an exact solution through fuzzy reasoning instead of Inverse Kinematics calculation Also, the result provides sufficient precision and transient tracking error can be controlled based on a fuzzy adaptive scheme proposed in this paper. Based on the Denavit-Hartenberg parameters specification, after the Jacobian matrix of arbitrary manipulator is calculated, we will construct Fuzzy Inverse Kinematics Mapping(FIKM) using fuzzy logic and represent a good control efficiency through simulation of 2-DOF manipulator.

  • PDF

The Forward Kinematics Solution for Casing Oscillator Using the Kinematic Inversion (기구학적 전이를 이용한 케이싱 오실레이터의 순기구학 해석)

  • 배형섭;백재호;박명관
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.130-139
    • /
    • 2004
  • The Casing Oscillator is a bore file Equipment for the all-casing process. All-casing process is a method of foundation work in construction yard to oscillate steel Casing in the ground. The existing Casing Oscillator has some problem like not boring horizontally with disturbance and not driving Casing othor angle except horizon. To solve problem, the new structure Casing Oscillator is presented and studied. The performance of Casing Oscillator is improved by kinematics analysis. The Casing Oscillator is similar to the parallel manipulator in structure. So we obtain Inverse kinematics solution of Casing Oscillator easily. But it is difficult to solve forward kinematics of Casing Oscillator. T his paper presents a novel pose description corresponding to the structure characteristics of parallel manipulators. Through analysis on geometry theory, we obtain a new method of the closed-form solution to the forward kinematics using Kinematic Inversion. The closed-form solution contains two different meanings -analytical and real-time. So we reach the goal of practical application and control. Closed-form forward kinematics solution is verified by an inverse kinematics analysis. It shows that the method has a practical value for real -time control and inverse kinematics servo control.

Simplex Analysis of the Forward Kinematics of 6-Degree-of-Freedom Parallel Manipulators Using Constraints with the Closed-loop Kinematics(Tetrahedron) (구속조건(사면체)을 사용한 6자유도 병렬 매니퓰레이터의 정기구학의 단순화 해석)

  • Song, Se-Kyong;Kwon, Dong-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.7
    • /
    • pp.559-567
    • /
    • 2000
  • This paper proposes simple and practical methods in order to overcome complex formulation and heavy computational burden of the forward kinematics of 6 앨 3-6 type parallel manipulators. Three ap-proaches for the forward kinematics are presented : one extra sensor a modified structure and novel numerical method. The proposed methods are applied to the forward kinematics of a new 6 앨 parallel manipulator with special geometry that has three internal links three external links and a moving platform of a cone shape. The proposed methods use three tetrahedrons for finding the position and orientation vector of the moving platform. The main advantages of the appraches using tetrahedrons are to abbreviate the formulation to easily find so-lutions of the forward kinematics and to be able to practically control of the manipulator in real time.

  • PDF

Solution Space of Inverse Differential Kinematics (역미분기구학의 해 공간)

  • Kang, Chul-Goo
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.4
    • /
    • pp.230-244
    • /
    • 2015
  • Continuous-path motion control such as resolved motion rate control requires online solving of the inverse differential kinematics for a robot. However, the solution space of the inverse differential kinematics related to Jacobian J is not well-established. In this paper, the solution space of inverse differential kinematics is analyzed through categorization of mapping conditions between joint velocities and end-effector velocity of a robot. If end-effector velocity is within the column space of J, the solution or the minimum norm solution is obtained. If it is not within the column space of J, an approximate solution by least-squares is obtained. Moreover, this paper introduces an improved mapping diagram showing orthogonality and mapping clearly between subspaces, and concrete examples numerically showing the concept of several subspaces. Finally, a solver and graphics user interface (GUI) for inverse differential kinematics are developed using MATLAB, and the solution of inverse differential kinematics using the GUI is demonstrated for a vertically articulated robot.

A new kinematic formulation of closed-chain mechanisms with redundancy and its applications to kinematic analysis

  • Kim, Sungbok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.396-399
    • /
    • 1995
  • This paper presents a new formulation of the kinematics of closed-chain mechanisms and its applications to obtaining the kinematic solutions and analyzing the singularities. Closed-chain mechanisms under consideration may have the redundancy in the number of joints. A closed-chain mechanism can be treated as the parallel connection of two open-chains with respect to a point of interest. The kinematics of a closed-chain mechanism is then obtained by imposing the kinematic constraints of the closed-chain on the kinematics of the two open-chains. First, we formulate the kinematics of a closed-chain mechanism using the kinematic constraint between the controllable active joints and the rest of joints, instead of the kinematic constraint between the two open-chains. The kinematic formulation presented in this paper is valid for closed-chain mechanisms with and without the redundancy. Next, based on the derived kinematics of a closed-chain mechanism, we provide the kinematic solutions which are more physically meaningful and less sensitive to numerical instability, and also suggest an effective way to analyze the singularities. Finally, the computational cost associated with the kinematic formulation is analyzed.

  • PDF

A Study on Motion Control and Kinematics Analysis of Articulated Manipulator Attachment for Excavator (포크레인용 다관절 매니퓰레이터 어태치먼트 운동학 해석 및 모션제어)

  • Kim, Hee-Jin;Kim, Sang-Hyun;Jang, Ki-Won;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.807-819
    • /
    • 2019
  • In this paper, it is proposed a new approach to motion control and kinematics analysis of articulated manipulator attachment with five degree of freedom for excavator. Unlike the well-established theory for the control of linear systems, there is little general control theory relatively for a robust control of nonlinear systems. The control technique is essential for providing a stable and robust performance for application of articulated manipulator control. The proposed control algorithm is one of robust control methods based on error informations of the position and velocity error informations using stability analysis of dynamic model. Through simulation test, the proposed control scheme is illustrated to be a efficient control technique for real-time control.

A study on kinematics and inverse kinematics of industrial FANUC robot (산업용 FANUC robot의 kinematics와 inverse kinematics에 대한 연구)

  • 박형준;한덕수;이쾌희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.551-556
    • /
    • 1991
  • This paper deal with the solution of kinematics and inverse kinematics of industrial FANUC robot by the bisection method with IBM PC 386. The inverse kinematics of FANUC robot cannot be solved by the algebraical method, because arm matrix T$_{6}$ is very complex and 6-joint angles are associated with the position and the approach of end-effector. Instead we found other 5-joint angle by an algebraical method after finding .theta.$_{4}$ value by a bisection method.d.

  • PDF

A Study on the Inverse Kinematics for a Biped Robot (2족 보행 로봇의 역기구학에 관한 연구)

  • 성영휘
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.1026-1032
    • /
    • 2003
  • A biped walking robot which is developed as a platform for researching walking algorithm is briefly introduced. The developed walking robot has 6 degrees of freedom per one leg. The origins of the last three axis do not intersect at a point, so the kinematic analysis is cubmersome with the conventional method. In the former version of the robot, Jacobian-based inverse kinematics method is used. However, the Jacobian-based inverse kinematics method has drawbacks for the application in which knee is fully extended such as stair-case walking. The reason far that is the Jacobian becomes ill-conditioned near the singular points and the method is not able to give adequate solutions. So, a method for giving a closed-form inverse kinematics solution is proposed. The proposed method is based on careful consideration of the kinematic structure of the biped walking robot.

Trajectory tracking control system of unmanned ground vehicle (무인자동차 궤적 추적 제어 시스템에 관한 연구)

  • Han, Ya-Jun;Kang, Chin-Chul;Kim, Gwan-Hyung;Tac, Han-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1879-1885
    • /
    • 2017
  • This paper discusses the trajectory tracking system of unmanned ground vehicles based on predictive control. Because the unmanned ground vehicles can not satisfactorily complete the path tracking task, highly efficient and stable trajectory control system is necessary for unmanned ground vehicle to be realized intelligent and practical. According to the characteristics of unmanned vehicle, this paper built the kinematics tracking models firstly. Then studied algorithm solution with the tools of the optimal stability analysis method and proposed a tracking control method based on the model predictive control. The controller used a kinematics-based prediction model to calculate the predictive error. This controller helps the unmanned vehicle drive along the target trajectory quickly and accurately. The designed control strategy has the true robustness, simplicity as well as generality for kinematics model of the unmanned vehicle. Furthermore, the computer Simulink/Carsim results verified the validity of the proposed control method.