• Title/Summary/Keyword: Control Force

Search Result 5,091, Processing Time 0.032 seconds

Sensorless Force Control with Observer for Multi-functional Upper Limb Rehabilitation Robot (다기능 재활운동을 위한 힘 센서가 없는 상지 재활 로봇의 힘 제어)

  • Choi, Jung Hyun;Oh, Sehoon;An, Jinung
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.356-364
    • /
    • 2017
  • This paper presents a force control based on the observer without taking any force or torque measurement from the robot which allows realizing more stable and robust human robot interaction for the developed multi-functional upper limb rehabilitation robot. The robot has four functional training modes which can be classified by the human robot interaction types: passive, active, assistive, and resistive mode. The proposed observer consists of internal disturbance observer and external force observer for distinctive performance evaluation. Since four training modes can be quantitatively identified as impedance variation, position-based impedance control with feedback and feedforward controller was applied to the assistive training mode. The results showed that the proposed sensorless observer estimated cleaner and more accurate force compared to the force sensor and the impedance controller embedded with the proposed observer completed the assistive training mode safely and properly.

Control and Evaluation of a New 6-DOF Haptic Device Using a Parallel Mechanism (병렬구조를 이용한 새로운 6자유도 역감제시 장치의 제어 및 평가)

  • Yun, Jeong-Won;Ryu, Je-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.2
    • /
    • pp.160-167
    • /
    • 2001
  • This paper presents control and evaluation of a new haptic device with a 6-DOF parallel mechanism for interfacing with virtual reality. This haptic device has low inertial, high bandwidth compactness, and high output force capability mainly due to of base-fixed motors. It has also wider orientation workspace mainly due to a RRR type spherical joint. A control method is presented with gravity compensation and with force feedback by an F/T sensor to compensate for the effects of unmodeled dynamics such as friction and inertia. Also, dynamic performance has been evaluated by experiments. for force characteristics such as maximum applicable force, static-friction force, minimum controllable force, and force bandwidth Virtual wall simulation with the developed haptic device has been demonstrated.

  • PDF

Comparison of semi-active friction control method to reduce transient vibration using SDOF model of truss structure (트러스 구조물의 1 자유도 모형을 이용한 반능동 마찰 제어 방법의 과도 응답 저감 성능 비교)

  • Park, Young-Min;Kim, Kwang-Joon;Oh, Hyun-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.59-63
    • /
    • 2011
  • Friction damping is one of the attractive vibration control technique for space structures due to its simplicity and large damping capacity. However, passive approaches for friction damping have a limitation because energy is no longer dissipated at sticking. In order to overcome this problem, semi-active control methods to adjust normal force at frictional interface have been studied in previous researches. In this paper, two semi-active friction control method is compared by simulating SDOF model of truss structure. The first approach is on-off control to maximize rate of energy dissipation, whereas the second concept is variable friction force control to minimize amplitude ratio for each half period. The maximum friction force, control variable in on-off control method, is obtained to minimize 1% settling time, and is different from optimal friction force in passive control. Simulation results show that performance of on-off control is better than that of variable friction force control in terms of settling time and controlled friction force.

  • PDF

A Study on the Stabilization Force Control of Robot Manipulator

  • Hwang, Yeong Yeun
    • International Journal of Safety
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • It is important to control the high accurate position and force to prevent unexpected accidents by a robot manipulator. Direct-drive robots are suitable to the position and force control with high accuracy, but it is difficult to design a controller because of the system's nonlinearity and link-interactions. This paper is concerned with the study of the stabilization force control of direct-drive robots. The proposed algorithm is consists of the feedback controllers and the neural networks. After the completion of learning, the outputs of feedback controllers are nearly equal to zero, and the neural networks play an important role in the control system. Therefore, the optimum adjustment of control parameters is unnecessary. In other words, the proposed algorithm does not need any knowledge of the controlled system in advance. The effectiveness of the proposed algorithm is demonstrated by the experiment on the force control of a parallelogram link-type robot.

Force control of the direct-drive robot using learning controller (학습제어기를 이용한 직접구동형 로봇의 힘제어)

  • Hwang, Yeong-Yeun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1819-1826
    • /
    • 1997
  • Direct-drive robots are suitable to the position and force control with high accuracy, but it is difficult to design a controller because of the system's nonlinearity and link-interactions. This paper is concerned with the study of the force control of direct-drive robots. The proposed algorithm consists of feedback controllers and a neural network. After the completion of learning, the output of feedback controller is nearly equal to zero, and the neural network controller plays an important role in the control system. Therefore, the optimum retuning of parameters of feedback controllers is unnecessary. In other words, the proposed algorithm does not require any knowledge of the controlled system in advance. The effectiveness of the proposed algorithm is demonstrated by the experiment on the force control of the parallelogram link-type direct-drive robot.

Flexible Motion Realized by Force-free Control: Pull-Out Work by an Articulated Robot Arm

  • Kushida, Daisuke;Nakamura, Masatoshi;Goto, Satoru;Kyura, Nobuhiro
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.464-473
    • /
    • 2003
  • A method for force-free control is proposed to realize pull-out work by an industrial articulated robot arm. This method achieves not only non-gravity and non-friction motion of an articulated robot arm according to an exerted force but also reflects no change in the structure of the servo controller. Ideal performance of a pull-out work by the force-free control method was assured by means of simulation and experimental studies with a two-degree-of-freedom articulated robot arm.

Force Tracking Control of a Small-Sized SMA Gripper H$_\infty$ Synthesis (H$_\infty$ 제어기법을 적용한 소형 SMA 그립퍼의 힘 추적 제어)

  • 한영민;최승복;정재천
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.391-395
    • /
    • 1996
  • This paper presents a robust force tracking control of a small-sized SMA gripper with two fingers using shape memory alloy(SMA) actuators. The mathematical governing equation of the proposed system is derived by Hamilton's principle and Lagrangian equation and then, the control system model is integrated with the first-order actuator dynamics. Uncertain system parameters such as time constant of the actuators are also included in the control model. A robust two degree of freedom(TDF) controller using H$_{\infty}$ control theory, which has inherent robustness to model uncertainties and external disturbances, is adopted to achieve end-point force tracking control of the two-finger gripper. Force tracking control performances for desired trajectories represented by sinusoidal and step functions are evaluated by undertaking both simulation and experimental works.

  • PDF

High Speed Direct Current Control for the 8/10 Bearingless SRM (8/10 베어링리스 SRM의 고속 직접전류제어)

  • Guan, Zhongyu;Ahn, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.690-697
    • /
    • 2012
  • Novel 8/10 bearingless switched reluctance motor, which can control rotor radial positions with magnetic force, is proposed. The motor has combined characteristics of switched reluctance motor and magnetic bearing. This paper proposes a air-gap control system method of suspending force control in a bearingless switched reluctance motor (BLSRM). The proposed radial force control scheme is independent to the torque winding current. A PI direct current control (DCC) controller and look-up table are used to maintain a constant rotor air-gap. From the analysis and the experimental results, it is shown that the proposed strategy is effective in realizing a naturally decoupled radial force control of BLSRM.

Decoupling Control of Tractive and Vertical Force of Linear Induction Motor (선형 유도전동기의 추진력 및 수직력 제어 방식)

  • Oh, Sung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.289-291
    • /
    • 1996
  • Linear induction motor(LIM) is widely used to drive magnetic levitation train. To drive LIM, different control method compared with conventional rotary type machine is needed. Since vertical force is generated inherently and it effects on the levitation system, vertical force should be kept constant for stable levitation. To keep vertical force constant, slip frequency should be kept constant. Once slip frequency is kept constant, tractive force can be controlled by adjusting motor currents. In this paper, control methods used so far arc analyzed with some experimental results and decoupling control algorithm is proposed to control tractive and vertical force separately. Control algorithm is verified through simulation.

  • PDF

Force Control of One Pair of 6-Link Electro-Hydraulic Manipulators (Application to the Approaching of a Bolt and the Wrenching of a Nut Tasks) (한쌍의 6축 전기유압 매니퓰레이터를 이용한 힘 제어 (너트의 장착 및 체결 작업에의 응용))

  • Ahn, Kyung-Kwan;Yang, Soon-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.1
    • /
    • pp.15-20
    • /
    • 2002
  • An electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and its parameter fluctuations are greater than those of an electrically driven manipulator. So it is relatively difficult to realize not only stable contact work but also accurate force control for the automatic assembly tasks using hydraulic manipulators. In this manuscript, we applied a compliance control, which is based on the position control by a disturbance observer for our manipulator system. A reference trajectory modification method is proposed in order to achieve accurate force control even though the stiffness and the position of the environment change. Experimental results show that highly robust force tracking by a 6-link electro-hydraulic manipulator could be achieved under various environment conditions. The proposed force control algorithm is applied to the approaching of bolt and the wrenching of nut tasks as one typical task in the maintenance work of live power electric line and is experimentally confirmed very effective for the task.