• 제목/요약/키워드: Contribution to electric power

검색결과 64건 처리시간 0.031초

The Economics Evaluation of Grid-connected Photovoltaic Systems in Residential Houses

  • Lee, Hyun-Seung;Kim, Sung-Bum;Shin, U-Cheul
    • KIEAE Journal
    • /
    • 제15권6호
    • /
    • pp.5-10
    • /
    • 2015
  • Purpose: To evaluate the economic performance of grid-connected photovoltaic system in residential house, household electricity bill policy of Korea Electric Power Corporation (KEPCO) must be applied precisely, and market tendency and uncertainty of system also need to be considered. In this study, to evaluate the economic feasibility of PV system, we measured PV power generation and electricity consumption of six of Green home in Daejeon through web based remote monitoring system. Method: We applied Monte-Carlo simulation based on life cycle cost analysis, to reflect an uncertainty of main factor in economic feasibility evaluation of photovoltaic system. Result: First, with deterministic analysis, the difference of NPV of cumulative financial savings among households varied from -3,310 ~ 24,170 thousand won, portraying notably big range. Also the possibility of getting the same result was 50% when applying uncertainty. Second, the higher electricity consumption is, the more economic feasibility of photovoltaic system increases because KEPCO uses progressive taxation in household electricity bill policy. Third, The contribution to variance of electricity price increases in NPV varied from 98.5% to 99.9%. While the inflation rate and annual degradation contributed very little to none.

스마트그리드 도입에 따른 소비자 보호 연구 (A Study on Consumer Protections for the Introduction of Smart Grid)

  • 김현제;조성한
    • 디지털융복합연구
    • /
    • 제9권5호
    • /
    • pp.1-9
    • /
    • 2011
  • 스마트그리드를 통해 소비자 선택 확대, 전력산업의 미래 변화에 적응과, 신재생에너지원의 사용증가 등의 여러 가지 편익을 도모 할 수 있다. 소비자는 적극적인 수요반응을 통해 시스템의 전반적인 효율성 향상에 기여하며 사업자가 제공하는 더 많은 정보에 기초하여 에너지이용 효율을 제고할 수 있다. 소비자보호를 위한 지능형전력망 정보의 수집, 활용, 보호에 대한 기본적인 법적 조항은 지능형전력망 구축 및 이용 촉진에 관한 법률에 제시되어 있다. 마지막으로 스마트그리드에 대한 소비자의 인식 제고를 위해 스마트그리드 홍보 및 교육 확대가 무엇보다 필요하다. 따라서 스마트그리드 소비자 수용성 제고 방안을 수립해야 한다는 것이다.

Utilization of Active Diodes in Self-powered Sensorless Three-phase Boost-rectifiers for Energy Harvesting Applications

  • Tapia-Hernandez, Alejandro;Ponce-Silva, Mario;Olivares-Peregrino, Victor Hugo;Valdez-Resendiz, Jesus Elias;Hernandez-Gonzalez, Leobardo
    • Journal of Power Electronics
    • /
    • 제17권4호
    • /
    • pp.1117-1126
    • /
    • 2017
  • The main contribution of this paper is the use of sensorless active diodes to generate the gate signals for a three-phase boost-rectifier with a self-powered control scheme. The sensorless operation is achieved making use of the gate control signals generated by the active diode schemes on each of the switching devices using a pulse width half-controlled boost rectifier modulation technique (PWM-HCBR). The proposed scheme synchronizes the gate control signals with a three phase voltage supply. Autonomous operation is obtained making use of the output DC bus to feed the control circuitry, the active diodes and the driver circuitry. The three-phase boost-rectifier is supplied by a three-phase permanent magnet electric generator powered by a solar concentrator dish with variable voltage and variable frequency conditions. Experimental results report an efficiency of up to 94.6% for 25 W and an input of 3.6 V peak per phase with 450.

Electrical Properties of a High Tc Superconductor for Renewed Electric Power Energy

  • Lee Sang-Heon
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권3호
    • /
    • pp.371-375
    • /
    • 2006
  • Effects of $Ag_2O$ doping on the electromagnetic properties in the BiSrCaCuO superconductor. The electromagnetic properties of doped and undoped $Ag_2O$ in the BiSrCaCuO superconductor were evaluated to investigate the contribution of the pinning centers. It was confirmed experimentally that a larger amount of magnetic flux was trapped in the $Ag_2O$ doped sample than in the undoped one, indicating that the pinning centers of magnetic flux are related closely to the occurrence of the magnetic effect. We have fabricated superconductor ceramics by the chemical process. A high Tc superconductor with a nominal composition of $Bi_2Sr_2Ca_2Cu_3O_y$ was prepared by the organic metal salts method. Experimental results suggest that the intermediate phase formed before the formation of the superconductor phase may be the most important factor. The relation between electromagnetic properties of Bi HTS and the external applied magnetic field was studied. The electrical resistance of the superconductor was increased by the application of the external magnetic field. But the increase in the electrical resistance continues even after the removal of the magnetic field. The reason is as follows; the magnetic flux due to the external magnetic field penetrates through the superconductor and the penetrated magnetic flux is trapped after the removal of the magnetic flux. During the sintering, doped $Ag_2O$ was converted to Ag particles that were finely dispersed in superconductor samples. It is considered that the area where normal conduction takes place increases by adding $Ag_2O$ and the magnetic flux penetrating through the sample increases. The results suggested that $Ag_2O$ acts to amplify pinning centers of magnetic flux, contributing to the occurrence of the electromagnetic properties.

변압기용 절연유의 특성에 관한 실험적 연구 (A study on an experimental basis a special character of insulating oil the use of a transformers)

  • 김성대;박일수
    • 한국산학기술학회논문지
    • /
    • 제12권11호
    • /
    • pp.5188-5193
    • /
    • 2011
  • 본 연구는 변압기 내부에 있는 절연유의 온도제어를 목적으로 열전소자인 펠티어 소자와 무전력 냉각장치인 Heat pipe를 이용한 다양한 시스템을 설계 제작하여, 절연유의 용량별 온도제어에 적용함으로써 최적의 시스템을 구현할 수 있었다. 실험을 통하여 $60^{\circ}C$ 이내의 상태에서는 Heat pipe 100 W + 펠티어 100 W의 조합형이 순수 Heat pipe 300 W보다 탁월한 성능을 확인할 수 있었다. 이를 통하여 조합형의 적정설계 방식이 우수하다는 것을 증명하고, 조합형을 사용함으로써 전기절약 효과와 수배전반의 보다 더 효율적인 관리에 기여하고자 한다.

전력계통 운영적용을 위한 전기저장장치 고장률 산정방안 (Outage Rate Calculating Method of Energy Storage System for the Application on Power System Operation)

  • 송승헌;최우영;국경수
    • 전기전자학회논문지
    • /
    • 제23권1호
    • /
    • pp.188-192
    • /
    • 2019
  • 전기저장장치가 주파수조정예비력 자원으로써 전력계통 운영에 대한 기여도가 증가됨에 따라 전기저장장치 설비용량의 신뢰성 확보가 요구되고 있으며, 이를 위해서는 전기저장장치의 가용용량에 고장률을 고려할 필요가 있다. 그러나 기존의 전기저장장치 고장률 산정방안은 전기저장장치 설비의 구조적 특징을 정확히 고려하지 못해 전기저장장치의 가용용량을 정확히 반영하지 못하고 있다. 본 논문에서는 전기저장장치 설비의 특징을 분석하고 이를 반영한 전기저장장치의 고장률 산정방안을 제안하였고 사례연구를 통하여 제안된 방안의 유효성을 검토하였다.

열병합발전소 질소산화물 확산에 관한 전산유체역학 simulation 연구 (Study on Computational Fluid Dynamics(CFD) simulation for NOx dispersion around combined heat and power plant)

  • 김지현;박영구
    • 한국응용과학기술학회지
    • /
    • 제32권1호
    • /
    • pp.62-71
    • /
    • 2015
  • 세계적으로 급증하는 전력수요에 대처하고, $CO_2$ 배출을 줄이고자 인구가 밀집되어 있는 도심지에 복합화력 발전소가 건설되고 있다. 환경규제가 계속적으로 강화됨에 따라 NOx 배출량을 줄이고자 저 NOx 버너, SCR 등 여러 가지 설비들을 설치하고 있다. 본 연구는 경기도 고양시 소재의 일산열병합발전소 1개소에서 배출되는 질소산화물을 TMS를 이용하여 배출계수를 산정하여 이를 전산유체동역학(CFD)에 적용하여 질소산화물의 거동을 살펴보고, 현장 실측 결과와 비교 검토하였다. 실측 기간 중 측정 시간에 따른 주 풍향 풍속의 순간적인 변화로 인해 실측 결과와 CFD 모델링 결과의 차이가 나타날 수 있으나, 모델링 결과와 실측 결과는 대부분 예측지점에서 유사한 농도로 나타났다. 향후 주변농도를 고려한 기여농도를 산출하여 실측농도에 가까운 예측농도 도출이 가능 할 것으로 판단된다.

On Thermal and State-of-Charge Balancing using Cascaded Multi-level Converters

  • Altaf, Faisal;Johannesson, Lars;Egardt, Bo
    • Journal of Power Electronics
    • /
    • 제13권4호
    • /
    • pp.569-583
    • /
    • 2013
  • In this study, the simultaneous use of a multi-level converter (MLC) as a DC-motor drive and as an active battery cell balancer is investigated. MLCs allow each battery cell in a battery pack to be independently switched on and off, thereby enabling the potential non-uniform use of battery cells. By exploiting this property and the brake regeneration phases in the drive cycle, MLCs can balance both the state of charge (SoC) and temperature differences between cells, which are two known causes of battery wear, even without reciprocating the coolant flow inside the pack. The optimal control policy (OP) that considers both battery pack temperature and SoC dynamics is studied in detail based on the assumption that information on the state of each cell, the schedule of reciprocating air flow and the future driving profile are perfectly known. Results show that OP provides significant reductions in temperature and in SoC deviations compared with the uniform use of all cells even with uni-directional coolant flow. Thus, reciprocating coolant flow is a redundant function for a MLC-based cell balancer. A specific contribution of this paper is the derivation of a state-space electro-thermal model of a battery submodule for both uni-directional and reciprocating coolant flows under the switching action of MLC, resulting in OP being derived by the solution of a convex optimization problem.

The Contribution of Innovation Activity to the Output Growth of Emerging Economies: The Case of Kazakhstan

  • Smagulova, Sholpan;Mukasheva, Saltanat
    • 유통과학연구
    • /
    • 제10권7호
    • /
    • pp.33-41
    • /
    • 2012
  • The purpose of this study is to analyse the state of the energy industry and to determine the efficiency of its functioning on the basis of energy conservation principle and application of innovative technologies aimed at improving the ecological modernisation of agricultural sectors of Kazakhstan. The research methodology is based on an integrated approach of financial and economic evaluation of the effectiveness of the investment project, based on calculation of elasticity, total costs and profitability, as well as on comparative, graphical and system analysis. The current stage is characterised by widely spread restructuring processes of electric power industry in many countries through introduction of new technical installations of energy facilities and increased government regulation in order to enhance the competitive advantage of electricity market. Electric power industry features a considerable value of creating areas. For example, by providing scientific and technical progress, it crucially affects not only the development but also the territorial organisation of productive forces, first of all the industry. In modern life, more than 90% of electricity and heat is obtained by Kazakhstan's economy by consuming non-renewable energy resources: different types of coal, oil shale, oil, natural gas and peat. Therefore, it is significant to ensure energy security, as the country faces a rapid fall back to mono-gas structure of fuel and energy balance. However, energy resources in Kazakhstan are spread very unevenly. Its main supplies are concentrated in northern and central parts of the republic, and the majority of consumers of electrical power live in the southern and western areas of the country. However, energy plays an important role in the economy of industrial production and to a large extent determines the level of competitive advantage, which is a promising condition for implementation of energy-saving and environmentally friendly technologies. In these circumstances, issues of modernisation and reforms of this sector in Kazakhstan gain more and more importance, which can be seen in the example of economically sustainable solutions of a large local monopoly company, significant savings in capital investment and efficiency of implementation of an investment project. A major disadvantage of development of electricity distribution companies is the prevalence of very high moral and physical amortisation of equipment, reaching almost 70-80%, which significantly increases the operating costs. For example, while an investment of 12 billion tenge was planned in 2009 in this branch, in 2012 it is planned to invest more than 17 billion. Obviously, despite the absolute increase, the rate of investment is still quite low, as the total demand in this area is at least more than 250 billion tenge. In addition, industrial infrastructure, including the objects of Kazakhstan electric power industry, have a tangible adverse impact on the environment. Thus, since there is a large number of various power projects that are sources of electromagnetic radiation, the environment is deteriorated. Hence, there is a need to optimise the efficiency of the organisation and management of production activities of energy companies, to create and implement new technologies, to ensure safe production and provide solutions to various environmental aspects. These are key strategic factors to ensure success of the modern energy sector of Kazakhstan. The contribution of authors in developing the scope of this subject is explained by the fact that there was not enough research in the energy sector, especially in the view of ecological modernisation. This work differs from similar works in Kazakhstan in the way that the proposed method of investment project calculation takes into account the time factor, which compares the current and future value of profit from the implementation of innovative equipment that helps to bring it to actual practise. The feasibility of writing this article lies in the need of forming a public policy in the industrial sector, including optimising the structure of energy disbursing rate, which complies with the terms of future modernised development of the domestic energy sector.

  • PDF

광명역 고속철도 역사를 활용한 1.5MW급 태양광발전시스템 설계 연구 (A Study on Design of 1.5MW Photovoltaic Power Generation System using Gwangmyeong Railway Station Building)

  • 유복종;박찬배;이주
    • 한국철도학회논문집
    • /
    • 제19권5호
    • /
    • pp.592-599
    • /
    • 2016
  • 프랑스 파리에서 2015년 12월 개최된 제21차 기후변화협약 당사국총회(COP21)는 신기후체제 합의문인 "파리 협정"을 채택하였다. 이는 2020년 만료 예정인 교토의정서를 대체하는 것으로 모든 국가가 전지구적인 기후변화대응에 참여하는 것으로 국제사회는 공동의 장기 목표로 산업화 이전 대비 지구 평균 기온 상승을 $2^{\circ}C$ 보다 상당히 낮은 수준으로 유지하고 온도 상승을 $1.5^{\circ}C$ 이하로 제한하기 위한 노력을 추구하여야 하며, 모든 국가는 장기 저탄소 개발 전략을 마련하여 2020년까지 제출하는 것을 요청하고 있다. 철도교통분야에서는 저탄소화에 대한 연구를 활발히 지속적으로 진행하고 있다. 본 논문에서는 국내 고속철도 역사 중 최대 건축규모이며 2014년 기준 여객수송인원 약 7백만명을 담당하는 광명역 역사 지붕을 활용한 1.5MW급 태양광 발전시스템을 설계를 위한 연구를 다룬다. 이를 위해 최적의 태양광발전시스템 설비를 구성한 후 PVsyst소프트웨어를 활용하여 연간 예상 발전량을 산출하고 배전계통 연계시에 예상 수익을 산출하여 철도역사의 태양광발전시스템 도입에 따른 저탄소 에너지화에 대한 기여도를 분석하고자 한다.